Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A characterization of the exponential distribution involving absolute differences of i.i.d. random variables


Author: W. Stadje
Journal: Proc. Amer. Math. Soc. 121 (1994), 237-243
MSC: Primary 62E10
DOI: https://doi.org/10.1090/S0002-9939-1994-1200180-1
MathSciNet review: 1200180
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A probability measure $ \mu $ on $ [0,\infty )$ is said to have property H if for independent random variables $ {X_1}$ and $ {X_2}$ distributed according to $ \mu $ the absolute difference $ \vert{X_1} - {X_2}\vert$ has the same distribution. Continuing previous work of Puri and Rubin we characterize the set of all distributions having property H.


References [Enhancements On Off] (What's this?)

  • [1] Heinrich Behnke and Friedrich Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd. LXXVII, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955 (German). MR 0073682
  • [2] William Feller, An introduction to probability theory and its applications. Vol. II., Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403
  • [3] Larry C. Grove, Algebra, Pure and Applied Mathematics, vol. 110, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. MR 734306
  • [4] Janos Galambos and Samuel Kotz, Characterizations of probability distributions, Lecture Notes in Mathematics, vol. 675, Springer, Berlin, 1978. A unified approach with an emphasis on exponential and related models. MR 513423
  • [5] Eugene Lukacs, Characteristic functions, Hafner Publishing Co., New York, 1970. Second edition, revised and enlarged. MR 0346874
  • [6] Prem S. Puri and Herman Rubin, A characterization based on the absolute difference of two i.i.d. random variables, Ann. Math. Statist. 41 (1970), 2113–2122. MR 0293761, https://doi.org/10.1214/aoms/1177696709

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 62E10

Retrieve articles in all journals with MSC: 62E10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1200180-1
Article copyright: © Copyright 1994 American Mathematical Society