ON THE MÜNTZ RATIONAL APPROXIMATION RATE

S. P. ZHOU

(Communicated by J. Marshall Ash)

Abstract. The present paper constructs a counterexample to show that a conjecture of Newman concerning rational approximation rate of arbitrary Markov system is generally not true.

Let \(C_{[0,b]} \) be the class of all real continuous functions \(f \) on \([0, b]\). For \(f \in C_{[0,b]} \),
\[
\omega(f, t) = \max \{|f(x + h) - f(x)| : x \in [0, b - h], \ 0 < h \leq t\},
\]
\[
\|f\|_{[0,b]} = \max_{x \in [0,b]} |f(x)|, \quad \text{and} \quad \|f\| = \|f\|_{[0,1]}.
\]
Given a subspace \(S \) of \(C_{[0,b]} \), let
\[
R(S) = \{P(x)/Q(x) : P(x) \in S, \ Q(x) \in S, \ Q(x) > 0, \ x \in (0, b]\},
\]
where we assume that \(P(0)/Q(0) = \lim_{x \to 0^+} P(x)/Q(x) \) is finite in the case \(Q(0) = 0 \). For a sequence \(\Lambda = \{\lambda_n\}_{n=0}^{\infty} \), write
\[
R(\Lambda) = R(\text{span}\{x^{\lambda_n}\}).
\]

From Müntz's theorem, it is well known that the linear combinations of \(\{x^{\lambda_n}\} \) for
\[
0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots
\]
are dense if and only if \(\sum_{n=1}^{\infty} 1/\lambda_n = \infty \).

Concerning the rational case, in 1976, Somorjai [5] showed a beautiful result that, under (1), \(R(\Lambda) \) is always dense in \(C_{[0,1]} \). In 1978, Bak and Newman [2] proved that, if \(\{\lambda_n\} \) is any sequence of distinct positive real numbers, then \(R(\Lambda) \) is dense in \(C_{[0,1]} \), too. Our recent work [6] showed that \(R(\Lambda) \) is always dense for any sequence of real numbers \(\{\lambda_n\} \) with infinitely many distinct elements.

Received by the editors June 4, 1991 and, in revised form, August 24, 1992.
1991 Mathematics Subject Classification. Primary 41A20, 41A30.
\(^1\)For \(b = \infty \), we assume further that \(\lim_{x \to \infty} f(x) \) exists and is finite.
Write

\[\Lambda_n = \{ \lambda_1, \lambda_2, \ldots, \lambda_n \}, \]

\[E_n = \{ e^{-\lambda_1 t}, e^{-\lambda_2 t}, \ldots, e^{-\lambda_n t} \}, \]

\[R(\Lambda_n) = R(\text{span}\{x^{\lambda_k} : \lambda_k \in \Lambda_n\}), \quad R(E_n) = R(\text{span}(E_n)), \]

\[R_n(f, \Lambda) = \min_{y \in R(\Lambda_n)} \| f - y \| \quad \text{for } f \in C_{[0,1]}, \]

\[R_n(f, E) = \min_{y \in R(E_n)} \| f - y \|_{[0,\infty)} \quad \text{for } f \in C_{[0,\infty]} . \]

On the quantitative Müntz rational approximation rate, Bak [1] proved that, if \(f \in C_{[0,1]} \) and \(\{ \lambda_n \} \) is a sequence with (1) and \(\lambda_k - \lambda_{k-1} \geq k \) for all \(k \geq 2 \), then

\[R_n(f, \Lambda) \leq C \omega(f, n^{-1}), \]

where here and throughout the paper \(C \) always indicates an absolute constant which may have different values in different places, while \(C(x) \) indicates a positive constant only depending upon \(x \).

Newman [4] raised the following two problems on this topic (Newman said that even he did not believe Problem 10.4):

Problem 10.3. Is it true that for any \(f \in C_{[0,1]} \) there exists \(R(x) \in R(\Lambda_n) \) such that

\[\| f - R \| \leq C \omega(f, n^{-1})? \]

Problem 10.4. The same conclusion as the above problem holds where \(x^{\lambda_k} \) are replaced by \(\Psi_k(x) \) for any Markov system \(\{\Psi_k(x)\} \).

An infinite Markov system on an interval \([a, b]\) is a collection of continuous functions on \([a, b]\), \(\mathcal{A} := \{ \Psi_1 = 1, \Psi_2, \Psi_3, \ldots \} \), with the property that, if an element of the real linear span of the first \(n \) vanishes at \(n \) points, then it vanishes identically.

The present paper will construct a counterexample to show Problem 10.4 is generally not true for a Markov system in the unbounded interval \([0, \infty)\).

We will prove the following result, which gives a negative answer to Problem 10.4 (for a Markov system in \([0, \infty)\)).

Theorem. Let \(\Lambda^* = \{ \lambda_k^* \}_{k=1}^{\infty} \) and

\[A = \{ A_1,1, A_1,2, A_1,3, A_1,4, A_2,1, A_2,2, A_2,3, A_2,4, \ldots, A_1,2^n, \]

\[A_2,2^n, \ldots, A_n,1, A_n,2, \ldots, A_n,2^n, A_1,2^n+1, \ldots, A_n,2^n+1, \]

\[A_1,2^n+2, \ldots, A_n,2^n+2, \ldots, A_1,2^{n+1}-1, \ldots, A_n,2^{n+1}-1 \} := \{ \lambda_k \}_{k=1}^{\infty}, \]

where

\[A_{i,j} = \lambda_i^* + j - 1, \quad i, j = 1, 2, \ldots, \quad \lambda_i^* = \begin{cases} 0, & i = 1, \\ i^{-2}, & i \geq 2. \end{cases} \]
Furthermore, let \(\{s_n\} \) be an increasing sequence with the following properties:

\[
\lim_{n \to \infty} s_n = +\infty, \quad s_n \sim s_{2n}, \quad \lim_{n \to \infty} \left(\frac{s_n}{n} \right) = 0.
\]

Then \(E \) is a Markov system on \([0, \infty) \) and there exists a function \(f \in C_{[0, \infty)} \) such that

\[
\lim_{n \to \infty} \sup_{E_n} \frac{R_n(f, E)}{s_n} > 0.
\]

Proof. It is a very clear fact that \(E \) is a Markov system since \(\lambda_k, \ k = 1, 2, \ldots, \) are distinct. Let \(T_n(t) := T_n(t, \lambda^*) \) be the generalized Chebyshev polynomial of degree \(n \) associated with the Markov system \(\{e^{-\lambda_k^* t}, e^{-\lambda_k^* t}, \ldots\} \) on \([0, \infty) \), that is, the linear form

\[
T_n(t) = C_0 \left(e^{-\lambda_1^* t} - \sum_{k=1}^{n-1} C_k e^{-\lambda_k^* t} \right),
\]

where \(C_k, \ k = 1, 2, \ldots, n-1, \) are chosen so that \(\sum_{k=1}^{n-1} C_k e^{-\lambda_k^* t} \) is the best approximant to \(e^{-\lambda_1^* t} \) from \(\text{span}\{e^{-\lambda_k^* t}\}_{k=1}^{n-1} \) and where \(C_0 \) is chosen so that \(\|T_n\|_{[0, \infty)} = 1 \).

By the well-known results in approximation theory, there exists an ordinary polynomial \(Q_n(x) \) with sufficiently large degree \(m_n \geq 1 \) such that

\[
\|T_n(t) - Q_n(e^{-t})\|_{[0, \infty)} \leq n^{-1}.
\]

Now we may select a sequence \(\{n_l\} \) by induction. Let \(n_1 = 2 \). Suppose \(n_l \) is given. Let

\[
M_l^* := n_l 2^n, \quad M_l := 2M_l^* + 2.
\]

Choose \(n_{l+1} \) satisfying the following properties:

\[
n_{l+1} \geq \lceil \log_2 (m_{M_l^*} + 1) \rceil, \quad \varepsilon_{l+1} := \sqrt{\frac{3M_{M_l^*}}{M_{l+1}}} \leq \min \left\{ \frac{\varepsilon_l M_l^*}{4}, \sum_{k=1}^{l} \varepsilon_k \left\| \frac{d}{dt} Q_l(e^{-t}) \right\|_{[0, \infty)} \right\}.
\]

By (2), (7) is possible. Define

\[
F_l(t) = \sum_{k=1}^{l} \varepsilon_k Q_{M_k}(e^{-t}), \quad f(t) = \sum_{k=1}^{\infty} \varepsilon_k Q_{M_k}(e^{-t}).
\]

It is quite clear that \(f \in C_{[0, \infty)} \) follows from (3) and (7). For any rational \(r(t) \in R(E_{M_l^*}) \),

\[
\|f(t) - r(t)\|_{[0, \infty)} \geq \|F_l(t) - r(t)\|_{[0, \infty)} - 2 \sum_{k=l+1}^{\infty} \varepsilon_k.
\]

\[2 \] By \(A_n \sim B_n \), we mean that there exists a positive constant \(M \) independent of \(n \) such that \(M^{-1} \leq A_n/B_n \leq M \).
We have the estimate

\[\|F_1 - r\|_{[0, \infty)} \geq \varepsilon_i(1 - M_i^{-1}). \]

In fact, that (9) fails will lead to a contradiction. Because of the definition, \(T_{M_i}(t) \) oscillates between \(\pm 1 \) exactly \(M_i \) times on \([0, \infty)\). Assume, for \(0 \leq x_1 < x_2 < \cdots < x_{M_i} \leq \infty \),

\[T_{M_i}(x_j) = \varepsilon(-1)^j, \quad \varepsilon = \pm 1. \]

From (3),

\[\text{sgn}(Q_{M_i}(x_j)) = \text{sgn}(T_{M_i}(x_j)), \quad |Q_{M_i}(x_j)| \geq 1 - M_i^{-1}. \]

Suppose (9) fails. Then

\[\text{sgn}((r - F_{i-1})(x_j)) = \text{sgn}((\varepsilon_iQ_{M_i} - F_i + r)(x_j)) = \text{sgn}(Q_{M_i}(x_j)), \]

which means \(r - F_{i-1} \) vanishes at least \(M_i - 1 \) times on \([0, \infty)\). It is impossible since \(r - F_{i-1} \in R(E_{M_i-2}) \) by (4)-(6) and by some direct arguments. Therefore, combining (7)-(9) yields that

\[\|f(t) - r(t)\|_{[0, \infty)} \geq \varepsilon_i(1 - M_i^{-1}) - \varepsilon_i s_{M_i}^{-1}, \]

so that

\[R_{M_i^*}(f, E) \geq \varepsilon_i(1 - M_i^{-1}) - \varepsilon_i s_{M_i}^{-1}. \]

On the other hand,

\[\omega(f, (M_i^*)^{-1}) \leq 3M_i^{-1} \sum_{k=1}^{l-1} \varepsilon_k \left\| \frac{d}{dt}Q_{M_i}(e^{-t}) \right\|_{[0, \infty)} + 3\varepsilon_i \omega(Q_{M_i}(e^{-t}), M_i^{-1}) \]

\[+ 4 \sum_{k=l+1}^{\infty} \varepsilon_k := \Sigma_1 + \Sigma_2 + \Sigma_3. \]

It follows from (7) that

\[\Sigma_3 \leq 2\varepsilon_i s_{M_i}^{-1} \quad \text{and} \quad \Sigma_1 \leq 3\varepsilon_i s_{M_i}^{-1}. \]

Applying (2) and an inequality for derivatives of generalized Müntz polynomials of Newman [3] we have

\[\Sigma_2 \leq 3\|Q_{M_i}(e^{-t}) - T_{M_i}(t)\|_{[0, \infty)} + 3M_i^{-1}\|T_{M_i}'\|_{[0, \infty)} = O(M_i^{-1}) \]

since \(\sum_{k=2}^{\infty} \lambda_k^* < +\infty \). Putting together the above estimates and (10) we then have

\[\frac{R_{M_i^*}(f, E)}{s_{M_i^*} \omega(f, (M_i^*)^{-1})} \geq \frac{C R_{M_i^*}(f, E)}{s_{M_i} \omega(f, (M_i^*)^{-1})} > C. \]

The theorem is completed. \(\square \)

3 We may take \(\infty \) as an alternating point.
REFERENCES

2. J. Bak and D. J. Newman, *Rational combinations of x^{λ_k}, $\lambda_k \geq 0$, are always dense in $C_{[0,1]}$*, J. Approx. Theory 23 (1978), 155–157.

Department of Mathematics, Statistics, and Computing Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

Current address: Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

E-mail address: zhou@approx.math.ualberta.ca