Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Correspondence theorems for nondegenerate modules and their endomorphism rings


Author: Zheng Ping Zhou
Journal: Proc. Amer. Math. Soc. 121 (1994), 25-32
MSC: Primary 16S50
DOI: https://doi.org/10.1090/S0002-9939-1994-1211594-8
MathSciNet review: 1211594
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ _RU$ be a left R-module whose Morita context is nondegenerate and $ S = {\text{End}}(U)$. We show the following:

(1) There is a projectivity (that is, an order-preserving bijection) between the complement submodules of $ _RU$ and the complement left ideals of S;

(2) S is a left CS ring if and only if $ _RU$ is a CS module;

(3) S is a Baer and left CS ring if and only if $ _RU$ is a nonsingular and CS module.

Special cases include some earlier works.


References [Enhancements On Off] (What's this?)

  • [1] S. A. Amitsur, Rings of quotients and Morita contexts, J. Algebra 17 (1971), 273-298. MR 0414604 (54:2704)
  • [2] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Springer-Verlag, New York, Heidelberg, and Berlin, 1974. MR 0417223 (54:5281)
  • [3] A. W. Chatters and S. M. Khuri, Endomorphism rings of modules over nonsingular CS rings, J. London Math. Soc. (2) 21 (1980), 434-444. MR 577719 (82m:16033)
  • [4] C. Faith, Lectures on injective modules and quotient rings, Lecture Notes in Math., vol. 246, Springer-Verlag, Heidelberg, 1972. MR 0342541 (49:7287)
  • [5] J. S. Golan, Torsion theory, Longman Sci. Tech., Essex, 1986. MR 880019 (88c:16034)
  • [6] J. Hutchinson and J. Zelmanowitz, Quotient rings of endomorphism rings of modules with zero singular submodule, Proc. Amer. Math. Soc. 35 (1972), 16-20. MR 0297805 (45:6857)
  • [7] J. Hutchinson, Endomorphism rings of torsionless modules, Comm. Algebra 15 (1987), 1921-1927. MR 898301 (88g:16033)
  • [8] S. M. Khuri, Properties of endomorphism rings of modules and their duals, Proc. Amer. Math. Soc. 96 (1986), 553-559. MR 826480 (87e:16008)
  • [9] -, Correspondence theorems for modules and their endomorphism rings, J. Algebra 122 (1989), 380-396. MR 999081 (90f:16045)
  • [10] B. R. MacDonald, Endomorphism rings of infinitely generated projective modules, J. Algebra 45 (1977), 69-82. MR 0427376 (55:410)
  • [11] J. C. McConnell and J. C. Robson, Noncommutative noetherian rings, Wiley, New York, 1987. MR 934572 (89j:16023)
  • [12] B. J. Müller, The quotient category of a Morita context, J. Algebra 28 (1974), 389-407. MR 0447336 (56:5649)
  • [13] B. Stenström, Rings of quotients, Springer-Verlag, Berlin, Heidelberg, and New York, 1975. MR 0389953 (52:10782)
  • [14] B. Zimmerman-Huisgen, Endomorphism rings of self-generators, Pacific J. Math. 61 (1975), 587-602. MR 0404322 (53:8124)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16S50

Retrieve articles in all journals with MSC: 16S50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1211594-8
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society