Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Path properties for $ l\sp \infty$-valued Gaussian processes


Authors: Miklós Csörgő, Zheng Yan Lin and Qi Man Shao
Journal: Proc. Amer. Math. Soc. 121 (1994), 225-236
MSC: Primary 60G15; Secondary 60F15, 60G10, 60G17
MathSciNet review: 1231032
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove moduli of continuity results for $ {l^\infty }$-valued Gaussian processes in general, as well as for $ {l^\infty }$-valued Ornstein-Uhlenbeck processes in particular.


References [Enhancements On Off] (What's this?)

  • [1] Endre Csáki and Miklós Csörgő, Fernique type inequalities for not necessarily Gaussian processes, C. R. Math. Rep. Acad. Sci. Canada 12 (1990), no. 5, 149–154. MR 1077478
  • [2] Endre Csáki and Miklós Csörgő, Inequalities for increments of stochastic processes and moduli of continuity, Ann. Probab. 20 (1992), no. 2, 1031–1052. MR 1159584
  • [3] E. Csáki, M. Csörgő, Z. Y. Lin, and P. Révész, On infinite series of independent Ornstein-Uhlenbeck processes, Stochastic Process. Appl. 39 (1991), no. 1, 25–44. MR 1135082, 10.1016/0304-4149(91)90029-C
  • [4] Endre Csáki, Miklós Csörgő, and Qi Man Shao, Fernique type inequalities and moduli of continuity for 𝑙²-valued Ornstein-Uhlenbeck processes, Ann. Inst. H. Poincaré Probab. Statist. 28 (1992), no. 4, 479–517 (English, with English and French summaries). MR 1193082
  • [5] -, Moduli of continuity for $ {l^p}$-valued Gaussian processes, Tech. Rep. Ser. Lab. Res. Stat. Probab. No. 160, Carleton University-University of Ottawa.
  • [6] Miklós Csörgő and Zheng Yan Lin, On moduli of continuity for Gaussian and 𝑙²-norm squared processes generated by Ornstein-Uhlenbeck processes, Canad. J. Math. 42 (1990), no. 1, 141–158. MR 1043516, 10.4153/CJM-1990-009-6
  • [7] M. Csörgő and Q. M. Shao, Strong limit theorems for large and small increments of $ {l^p}$-valued Gaussian processes, Ann. Probab. 21 (1993).
  • [8] D. A. Dawson, Stochastic evolution equations, Math. Biosci. 15 (1972), 287–316. MR 0321178
  • [9] Xavier Fernique, La régularité des fonctions aléatoires d’Ornstein-Uhlenbeck à valeurs dans 𝑙²; le cas diagonal, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 1, 59–62 (French, with English summary). MR 1004940
  • [10] -, Sur la régularité de certaines fonctions aléatoires d'Ornstein-Uhlenbeck, Ann. Inst. H. Poincaré Probab. Statist. 26 (1990), 399-417.
  • [11] I. Iscoe, M. B. Marcus, D. McDonald, M. Talagrand, and J. Zinn, Continuity of 𝑙²-valued Ornstein-Uhlenbeck processes, Ann. Probab. 18 (1990), no. 1, 68–84. MR 1043937
  • [12] I. Iscoe and D. McDonald, Large deviations for 𝑙²-valued Ornstein-Uhlenbeck processes, Ann. Probab. 17 (1989), no. 1, 58–73. MR 972771
  • [13] B. Schmuland, Dirichlet forms and infinite dimensional Ornstein-Uhlenbeck processes, Ph.D. Dissertation, Carleton University, Ottawa, 1987.
  • [14] Byron Schmuland, Some regularity results on infinite-dimensional diffusions via Dirichlet forms, Stochastic Anal. Appl. 6 (1988), no. 3, 327–348. MR 949683, 10.1080/07362998808809152
  • [15] B. Schmuland, Regularity of 𝑙²-valued Ornstein-Uhlenbeck processes, C. R. Math. Rep. Acad. Sci. Canada 10 (1988), no. 2, 119–124. MR 933225
  • [16] Byron Schmuland, Moduli of continuity for some Hilbert space valued Ornstein-Uhlenbeck processes, C. R. Math. Rep. Acad. Sci. Canada 10 (1988), no. 4, 197–201. MR 955099
  • [17] B. Schmuland, Sample path properties of 𝑙^{𝑝}-valued Ornstein-Uhlenbeck processes, Canad. Math. Bull. 33 (1990), no. 3, 358–366. MR 1077111, 10.4153/CMB-1990-060-9

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60G15, 60F15, 60G10, 60G17

Retrieve articles in all journals with MSC: 60G15, 60F15, 60G10, 60G17


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1994-1231032-9
Keywords: $ {l^\infty }$-valued Gaussian processes, $ {l^\infty }$-valued Ornstein-Uhlenbeck processes, moduli of continuity, quasi-increasing functions
Article copyright: © Copyright 1994 American Mathematical Society