Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



$ n\times$ oversampling preserves any tight affine frame for odd $ n$

Authors: Charles K. Chui and Xian Liang Shi
Journal: Proc. Amer. Math. Soc. 121 (1994), 511-517
MSC: Primary 42C15
MathSciNet review: 1182699
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ \psi $ generates an affine frame $ {\psi _{j,k}}(x) = {2^{j/2}}\psi ({2^j}x - k),j,k \in \mathbb{Z}$, of $ {L^2}(\mathbb{R})$, we prove that $ \{ {n^{ - 1/2}}{\psi _{j,k/n}}\} $ is also an affine frame of $ {L^2}(\mathbb{R})$ with the same frame bounds for any positive odd integer n. This establishes the result stated as the title of this paper. A counterexample of this statement for $ n = 2$ is also given.

References [Enhancements On Off] (What's this?)

  • [1] C. K. Chui, An introduction to wavelets, Academic Press, Boston, 1992. MR 1150048 (93f:42055)
  • [2] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), 961-1005. MR 1066587 (91e:42038)
  • [3] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., vol. 61, SIAM, Philadelphia, PA, 1992. MR 1162107 (93e:42045)
  • [4] R. J. Duffin and A. C. Schaefer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. MR 0047179 (13:839a)
  • [5] C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628-666. MR 1025485 (91c:42032)
  • [6] Y. Meyer, Ondelettes et opérateurs, Vol. 1, Hermann, Paris, 1990. MR 1085487 (93i:42002)
  • [7] R. M. Young, An introduction to nonharmonic Fourier series, Academic Press, New York, 1980. MR 591684 (81m:42027)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42C15

Retrieve articles in all journals with MSC: 42C15

Additional Information

Keywords: Frames, frame bounds, wavelets, oversampling, recovery from wavelet transforms
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society