Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A homological characterization of abelian $ B\sb 2$-groups


Author: K. M. Rangaswamy
Journal: Proc. Amer. Math. Soc. 121 (1994), 409-415
MSC: Primary 20K20; Secondary 20K35, 20K40
DOI: https://doi.org/10.1090/S0002-9939-1994-1186993-3
MathSciNet review: 1186993
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Assuming the Continuum Hypothesis, we show that a torsion-free abelian group G is a $ {B_2}$-group if and only if $ {\text{Bext}^1}(G,T) = 0 = {\text{Bext}^2}(G,T)$, for every torsion group T.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20K20, 20K35, 20K40

Retrieve articles in all journals with MSC: 20K20, 20K35, 20K40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1186993-3
Keywords: Torsion-free abelian groups, Butler groups, $ {B_2}$-groups, pure subgroups, axiom-3 family of subgroups
Article copyright: © Copyright 1994 American Mathematical Society