Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Incompatibility of compact perturbations with the Sz. Nagy-Foias functional calculus


Authors: Kenneth R. Davidson and Fouad Zarouf
Journal: Proc. Amer. Math. Soc. 121 (1994), 519-522
MSC: Primary 47A60; Secondary 47D25
DOI: https://doi.org/10.1090/S0002-9939-1994-1195716-3
MathSciNet review: 1195716
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For every absolutely continuous contraction T with spectrum on the unit circle, we exhibit an $ {H^\infty }$ function h and a sequence of operators $ {T_n}$ which are unitarily equivalent to T and differ from T by a sequence of compact operators converging to 0 in norm such that $ h({T_n})$ is never a compact perturbation of $ h(T)$. When T is diagonal, it can also be arranged that $ T - {T_n}$ is trace class, and $ {T_n}$ commutes with T.

Pour toute contraction absolument continue T dont le spectre rencontre le cercle unité, il existe une fonction h de $ {H^\infty }$ et une suite $ {T_n}$ d'opérateurs unitairement equivalents à T telle que $ T - {T_n}$ soit compact et convergent en norme vers 0, mais $ h({T_n}) - h(T)$ soit non compact pour tout n. Dans le cas où T est diagonal, la suite $ {T_n}$ vérifie en plus $ T - {T_n}$ est un opérateur à trace, et $ {T_n}$ commute avec T.


References [Enhancements On Off] (What's this?)

  • [1] C. Foiaş, C. Pearcy, and B. Sz. Nagy, Contractions with spectral radius one and invariant subspaces, Acta. Sci. Math. (Szeged) 43 (1981), 273-280. MR 640304 (84g:47002)
  • [2] J. Esterle and F. Zarouf, Sur la non compatibilité de l'équivalence de Calkin avec le calcul fonctionnel de Nagy-Foiaş, Canad. Math. Bull. (to appear). MR 1077093 (92a:47021)
  • [3] -, Compatibility and incompatibility of Calkin equivalence with the Nagy-Foiaş calculus, Acta. Sci. Math. (Szeged) 56 (1992), 359-363. MR 1222079 (94c:47016)
  • [4] B. Sz. Nagy and C. Foiaş, Harmonic analysis of operators on Hilbert space, American Elsevier, New York, 1970. MR 0275190 (43:947)
  • [5] D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), 97-113. MR 0415338 (54:3427)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A60, 47D25

Retrieve articles in all journals with MSC: 47A60, 47D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1195716-3
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society