Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Minimal surfaces with the Ricci condition in $ 4$-dimensional space forms


Author: Makoto Sakaki
Journal: Proc. Amer. Math. Soc. 121 (1994), 573-577
MSC: Primary 53C42
DOI: https://doi.org/10.1090/S0002-9939-1994-1195731-X
MathSciNet review: 1195731
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {X^N}(c)$ denote the N-dimensional simply connected space form of constant curvature c. We consider a problem to classify those minimal surfaces in $ {X^N}(c)$ which are locally isometric to minimal surfaces in $ {X^3}(c)$. In this paper we solve this problem in the case where $ N = 4$, and give a result also in higher codimensional cases.


References [Enhancements On Off] (What's this?)

  • [1] A. C. Asperti, Minimal surfaces with constant normal curvature, J. Math. Soc. Japan 36 (1984), 375-386. MR 746701 (85m:53020)
  • [2] R. Bryant, Minimal surfaces of constant curvature in $ {S^n}$, Trans. Amer. Math. Soc. 290 (1985), 259-271. MR 787964 (87c:53110)
  • [3] L. P. Eisenhart, An introduction to differential geometry, Princeton Univ. Press, Princeton, NJ, 1947. MR 0003048 (2:154e)
  • [4] I. V. Guadalupe and R. A. Tribuzy, Minimal immersions of surfaces into 4-dimensional space forms, Rend. Sem. Mat. Univ. Padova 73 (1985), 1-13. MR 799891 (86k:53076)
  • [5] T. Itoh, Minimal surfaces in a Riemannian manifold of constant curvature, Kodai Math. Sem. Rep. 25 (1973), 202-214. MR 0317240 (47:5787)
  • [6] G. D. Johnson, An intrinsic characterization of a class of minimal surfaces in constant curvature manifolds, Pacific J. Math. 149 (1991), 113-125. MR 1099786 (92c:53041)
  • [7] K. Kenmotsu, On compact minimal surfaces with non-negative Gaussian curvature in a space of constant curvature. I, Tohoku Math. J. 25 (1973), 469-479. MR 0365428 (51:1680)
  • [8] -, On minimal immersions of $ {R^2}$ into $ {S^N}$, J. Math. Soc. Japan 28 (1976), 182-191. MR 0405218 (53:9012)
  • [9] -, Minimal surfaces with constant curvature in 4-dimensional space forms, Proc. Amer. Math. Soc. 89 (1983), 133-138. MR 706526 (84m:53062)
  • [10] H. B. Lawson, Complete minimal surfaces in $ {S^3}$, Ann. of Math. (2) 92 (1970), 335-374. MR 0270280 (42:5170)
  • [11] -, Some intrinsic characterizations of minimal surfaces, J. Analyse Math. 24 (1971), 151-161. MR 0284922 (44:2146)
  • [12] -, Lectures on minimal submanifolds, Publish or Perish, Berkeley, 1980.
  • [13] R. Naka, Some results on minimal surfaces with the Ricci condition, Minimal Submanifolds and Geodesies (M. Obata, ed.), Kaigai, Tokyo, 1978, pp. 121-142. MR 574261 (82c:53042)
  • [14] M. Sakaki, Exceptional minimal surfaces with the Ricci condition, Tsukuba J. Math. 16 (1992), 161-167. MR 1178671 (93i:53060)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C42

Retrieve articles in all journals with MSC: 53C42


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1195731-X
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society