Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Exotic smoothings of hyperbolic manifolds which do not support pinched negative curvature


Authors: F. T. Farrell and L. E. Jones
Journal: Proc. Amer. Math. Soc. 121 (1994), 627-630
MSC: Primary 57R55; Secondary 53C21, 57R10, 57R60
DOI: https://doi.org/10.1090/S0002-9939-1994-1203985-6
MathSciNet review: 1203985
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Constructed in this note are examples of topological manifolds M supporting at least two distinct smooth structures $ {\mathcal{M}_1}$ and $ {\mathcal{M}_2}$, where $ {\mathcal{M}_1}$ is a complete, finite volume, real hyperbolic manifold, while $ {\mathcal{M}_2}$ cannot support a complete, finite volume, pinched negatively curved Riemannian metric.


References [Enhancements On Off] (What's this?)

  • [1] W. Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. (2) 90 (1969), 157-186. MR 0251736 (40:4963)
  • [2] P. Buser and H. Karcher, Gromov's almost flat manifold, Astérisque 81 (1981), 1-148. MR 619537 (83m:53070)
  • [3] P. Eberlein, Lattices in spaces of non positive curvature, Ann. of Math. (2) 111 (1980), 435-476. MR 577132 (82m:53040)
  • [4] F. T. Farrell and W. C. Hsiang, The Whitehead group of poly-(finite or cyclic) groups, J. London Math. Soc. (2) 24 (1981), 308-324. MR 631942 (83b:20041)
  • [5] -, Topological characterization of flat and almost flat Riemannian manifolds $ {M^n}(n \ne 3,4)$, Amer. J. Math. 105 (1983), 641-672. MR 704219 (84k:57017)
  • [6] F. T. Farrell and L. E. Jones, A topological analogue of Mostow's rigidity theorem, J. Amer. Math. Soc. 2 (1989), 257-370. MR 973309 (90h:57023a)
  • [7] -, Negatively curved manifolds with exotic smooth structures, J. Amer. Math. Soc. 2 (1989), 899-908. MR 1002632 (90f:53075)
  • [8] -, Non-uniform hyperbolic lattices and exotic smooth structures, J. Differential Geom. 38 (1993), 235-261. MR 1237485 (95e:57051)
  • [9] M. Gromov, Manifolds of negative curvature, J. Differential Geom. 13 (1978), 223-230. MR 540941 (80h:53040)
  • [10] -, Almost flat manifolds, J. Differential Geom. 13 (1978), 231-242. MR 540942 (80h:53041)
  • [11] E. Heintze and H. C. Im Hof, Geometry of horospheres, J. Differential Geom. 12 (1977), 481-491. MR 512919 (80a:53051)
  • [12] M. Kervaire and J. W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537. MR 0148075 (26:5584)
  • [13] R. C. Kirby and L. C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Ann. of Math. Stud., vol. 88, Princeton Univ. Press, Princeton, NJ, 1977. MR 0645390 (58:31082)
  • [14] G. D. Mostow, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1967), 53-104. MR 0236383 (38:4679)
  • [15] K.-B. Lee and F. Raymond, Rigidity of almost crystallographic groups, Contemp. Math., vol. 44, Amer. Math. Soc., Providence, RI, 1985, pp. 73-78. MR 813102 (87d:57026)
  • [16] E. Ruh, Almost flat manifolds, J. Differential Geom. 17 (1982), 1-14. MR 658470 (84a:53047)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57R55, 53C21, 57R10, 57R60

Retrieve articles in all journals with MSC: 57R55, 53C21, 57R10, 57R60


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1203985-6
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society