Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A correspondence theorem for modules over Hopf algebras

Author: Jeffrey Bergen
Journal: Proc. Amer. Math. Soc. 121 (1994), 343-345
MSC: Primary 16W30; Secondary 16S40
MathSciNet review: 1211578
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let H be a finite-dimensional Hopf algebra. We prove that if M is a faithful H-module and if $ {H_1} \ne {H_2}$ are sub-Hopf algebras of H, then $ {M^{{H_1}}} \ne {M^{{H_2}}}$, where $ {M^{{H_1}}}$ and $ {M^{{H_2}}}$ are the invariants in M under the respective actions of $ {H_1}$ and $ {H_2}$. We also show that if $ {H_1} \ne {H_2}$, then $ {H_1}$ and $ {H_2}$ have different left integrals. Both of these results rely heavily on the freeness theorem of Nichols-Zoeller.

References [Enhancements On Off] (What's this?)

  • [BM] J. Bergen and S. Montgomery, Smash products and outer derivations, Israel J. Math. 53 (1986), 321-345. MR 852484 (87i:16065)
  • [LS] R. G. Larson and M. E. Sweedler, An associative bilinear form for Hopf algebras, Amer. J. Math. 91 (1969), 75-94. MR 0240169 (39:1523)
  • [NZ] W. D. Nichols and M. Bettina Zoeller, A Hopf algebra freeness theorem, Amer. J. Math. 111 (1989), 381-385. MR 987762 (90c:16008)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16W30, 16S40

Retrieve articles in all journals with MSC: 16W30, 16S40

Additional Information

Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society