AN EXAMPLE CONCERNING
THE YOSIDA-HEWITT DECOMPOSITION
OF FINITELY ADDITIVE MEASURES

WOLFGANG HENSGEN

(Communicated by Dale Alspach)

Abstract. Let \(\lambda \) be Lebesgue measure on the Lebesgue \(\sigma \)-algebra \(\mathcal{L} \) of
\(I := [0, 1] \). The author gives an example of a purely finitely additive mea-
sure \(\varphi : \mathcal{L} \to [0, 1] \) vanishing on \(\lambda \)-null sets such that \(\int f d\varphi = \int f d\lambda \)
for every bounded continuous function \(f \) on \(I \) (\(f \in C_b(I) \)). Consequently,
\(\lambda - \varphi \in L^\infty(\lambda)' \) annihilates \(C_b(I) \) and is not purely finitely additive, contrary
to an assertion of Yosida and Hewitt.

To be in accordance with [HY], the scalar field is \(\mathbb{R} \), although \(\mathbb{C} \) could be
used with insignificant changes in what follows. Also, only bounded real-valued
set functions are considered. A finitely additive measure \(\varphi \geq 0 \) on an algebra
of sets is called purely finitely additive (p.f.a.) if every \(\sigma \)-additive measure \(\mu \),
\(0 \leq \mu \leq \varphi \), is zero. If the requirement \(\varphi \geq 0 \) is dropped, \(\varphi \) is called p.f.a. if
the positive and negative variations \(\varphi_+ \) and \(\varphi_- \) are both p.f.a. Every finitely
additive measure can be uniquely written as \(\mu + \varphi \), where \(\mu \) is \(\sigma \)-additive and
\(\varphi \) is p.f.a. This is the content of the Yosida-Hewitt decomposition theorem
[HY, 1.24]. In later sections of this fundamental work on finitely additive
measures, the authors study the bounded linear functionals on \(L^\infty(\lambda) \). Those
are easily identified as the finitely additive measures on \(\mathcal{L} \) vanishing on \(\lambda \)-null
sets [HY, 2.3]. Such a measure \(\varphi \) is p.f.a. if and only if it is concentrated on
sets of arbitrarily small \(\lambda \)-measure, where \(\varphi \) is called concentrated on \(E \in \mathcal{L} \)
if \(\|\varphi\|(I\setminus E) = 0 \) [HY, 3.1].

Let us turn to the construction of the example announced in the abstract.
For any \(t_0 \in I \) there exists a positive (hence bounded) linear functional \(\varphi_0 \) on
\(L^\infty(\lambda) \) with \(\varphi_0|C_b(I) = \delta_{t_0} := \) point evaluation at \(t_0 \). Just apply the Hahn-
Banach theorem to find a linear functional below the sublinear functional \(f \mapsto \text{ess}\limsup_{t \to t_0} f(t) := \lim_{t \downarrow t_0} \text{ess}\sup_{t_0 - \epsilon \leq t \leq t_0 + \epsilon} f(t) \) on \(L^\infty(\lambda) \). [One could even
find a character of \(L^\infty(\lambda) \) extending \(\delta_{t_0} \) (see, e.g., [IT, p. 107], but I will not
need this.) Any such \(\varphi_0 \) is concentrated on every neighbourhood \(U \) of \(t_0 \) (in
particular p.f.a.). To see this, take any \(f \in C_b(I) \), \(f \leq 1_U \), \(f(t_0) = 1 \). Then
\(1 = \delta_{t_0}(f) = \varphi_0(f) \leq \varphi_0(1_U) \leq \varphi_0(1) = 1 \), so \(\varphi_0(1_U) = 1 \).
Now let \(t_{nj} := (j + \frac{1}{2})2^{-n} \) for \(n \in \mathbb{N}, 0 \leq j \leq 2^n - 1 \), and \(\varphi_{nj} \) be a positive functional on \(L^\infty(\lambda) \) with \(\varphi_{nj}|_{C_b(I)} = \delta_{t_{nj}} \). Next, choose and fix a Banach limit \(\text{Lim} \), that is a positive (hence bounded) linear extension of the “lim” functional over \(l^\infty \). (Take a linear functional below \(\text{lim sup} \).) For \(x = (x_n)_{n \in \mathbb{N}} \in l^\infty \) write \(\text{Lim}_{n \to \infty} x_n \) instead of \(\text{Lim}(x) \).

Define \(\varphi(f) := \text{Lim}_{n \to \infty} 2^{-n} \sum_{j=0}^{2^n-1} \varphi_{nj}(f) \) for \(f \in L^\infty(\lambda) \). Obviously, \(\varphi \in L^\infty(\lambda)' \) is positive and concentrated on every neighbourhood of the set of points \(t_{nj} \); hence, \(\varphi \) is p.f.a. Moreover, any \(f \in C_b(I) \) arbitrarily extended over \([0, 1]\) is Riemann integrable over \([0, 1]\), so \(\varphi(f) = \int_0^1 f(t) \, dt = \int f \, d\lambda \). \(\varphi(1) \) being 1, the set function \(\varphi(A) = \varphi(1_A) \), \(A \in \mathcal{L} \), has all the announced properties.

Finally, the difference \(\lambda - \varphi \in L^\infty(\lambda)' \) annihilates \(C_b(I) \) but is not p.f.a. (uniqueness of the decomposition!), contrary to the last assertion of [HY, Theorem 3.4].

The careful reader might argue that Yosida and Hewitt consider \(\mathbb{R} \) instead of \(I \). However, note that their measure \(\lambda \) is an (arbitrary) probability measure equivalent to Lebesgue measure on \(\mathbb{R} \). Therefore, any both-way null set-preserving homeomorphism \(I \to \mathbb{R} \) can be used for translation.

Noted added in proof

After this note had been accepted for publication, I found that M. Valadier (Une singulière forme linéaire singulière sur \(L^\infty \), Sém. d’Analyse Convexe Montpellier 1987, Exposé no. 4) has (also) constructed a p.f.a. functional on \(L^\infty(\lambda) \) which extends the functional \(\lambda \) on \(C[0, 1] \). In this connection, see also the article by Y. A. Abramovich and A. W. Wickstead, *Singular extensions and restrictions of order continuous functionals*, Hokkaida Math. J. 21 (1992), 475–482.

References

Universität Regensburg, Naturwissenschaftliche Fakultät I–Mathematik, Universitätstrasse 31, 93040 Regensburg, Germany

E-mail address: hensgen@alf2.ngate.uni-regensburg.de