On regularity conditions for random fields

Author:
Richard C. Bradley

Journal:
Proc. Amer. Math. Soc. **121** (1994), 593-598

MSC:
Primary 60G60; Secondary 28D15, 60G25

MathSciNet review:
1219721

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Indexed by the integer lattice of dimension at least two, there exists a nondegenerate strictly stationary random field which is one-dependent with respect to "lattice-halfspaces" but which is also measurable with respect to its own tail sigma-field.

**[1]**Richard C. Bradley,*A bilaterally deterministic 𝜌-mixing stationary random sequence*, Trans. Amer. Math. Soc.**294**(1986), no. 1, 233–241. MR**819945**, 10.1090/S0002-9947-1986-0819945-0**[2]**Richard C. Bradley,*A caution on mixing conditions for random fields*, Statist. Probab. Lett.**8**(1989), no. 5, 489–491. MR**1040812**, 10.1016/0167-7152(89)90032-1**[3]**Richard C. Bradley,*On the spectral density and asymptotic normality of weakly dependent random fields*, J. Theoret. Probab.**5**(1992), no. 2, 355–373. MR**1157990**, 10.1007/BF01046741**[4]**-,*Equivalent mixing conditions for random fields*, Ann. Probab. (in press).**[5]**A. V. Bulinskiĭ,*Various mixing conditions and the asymptotic normality of random fields*, Dokl. Akad. Nauk SSSR**299**(1988), no. 4, 785–789 (Russian); English transl., Soviet Math. Dokl.**37**(1988), no. 2, 443–448. MR**943731****[6]**-,*Limit theorems under weak dependence conditions*, Moscow Univ. Press, Moscow, 1989. (Russian)**[7]**Robert M. Burton, Manfred Denker, and Meir Smorodinsky,*Finite state bilaterally deterministic strongly mixing processes*, Israel J. Math.**95**(1996), 115–133. MR**1418290**, 10.1007/BF02761036**[8]**R. L. Dobrušin,*Description of a random field by means of conditional probabilities and conditions for its regularity*, Teor. Verojatnost. i Primenen**13**(1968), 201–229 (Russian, with English summary). MR**0231434****[9]**V. F. Gaposhkin,*Moment bounds for integrals of*-*mixing fields*, Theory Probab. Appl.**36**(1991), 249-260.**[10]**Charles M. Goldie and Priscilla E. Greenwood,*Variance of set-indexed sums of mixing random variables and weak convergence of set-indexed processes*, Ann. Probab.**14**(1986), no. 3, 817–839. MR**841586****[11]**V. V. Gorodetskii,*The central limit theorem and an invariance principle for weakly dependent random fields*, Soviet Math. Dokl.**29**(1984), 529-532.**[12]**V. M. Gurevic,*On one-sided and two-sided regularity of stationary random processes*, Soviet Math. Dokl.**14**(1973), 804-808.**[13]**Carla C. Neaderhouser,*An almost sure invariance principle for partial sums associated with a random field*, Stochastic Process. Appl.**11**(1981), no. 1, 1–10. MR**608003**, 10.1016/0304-4149(81)90017-X**[14]**Richard A. Olshen,*The coincidence of measure algebras under an exchangeable probability.*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**18**(1971), 153–158. MR**0288797****[15]**Donald S. Ornstein and Benjamin Weiss,*Every transformation is bilaterally deterministic*, Israel J. Math.**21**(1975), no. 2-3, 154–158. Conference on Ergodic Theory and Topological Dynamics (Kibbutz Lavi, 1974). MR**0382600****[16]**Murray Rosenblatt,*Stationary sequences and random fields*, Birkhäuser Boston, Inc., Boston, MA, 1985. MR**885090****[17]**Lanh Tat Tran,*Kernel density estimation on random fields*, J. Multivariate Anal.**34**(1990), no. 1, 37–53. MR**1062546**, 10.1016/0047-259X(90)90059-Q**[18]**I. G. Zhurbenko,*On mixing conditions for random processes with values in a Hilbert space*, Soviet Math. Dokl.**30**(1984), 465-467.**[19]**I. G. Žurbenko,*The spectral analysis of time series*, North-Holland Series in Statistics and Probability, vol. 2, North-Holland Publishing Co., Amsterdam, 1986. With a foreword by A. N. Kolmogorov. MR**860209**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
60G60,
28D15,
60G25

Retrieve articles in all journals with MSC: 60G60, 28D15, 60G25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1219721-3

Keywords:
One-dependent,
deterministic,
strictly stationary random field

Article copyright:
© Copyright 1994
American Mathematical Society