On regularity conditions for random fields

Author:
Richard C. Bradley

Journal:
Proc. Amer. Math. Soc. **121** (1994), 593-598

MSC:
Primary 60G60; Secondary 28D15, 60G25

DOI:
https://doi.org/10.1090/S0002-9939-1994-1219721-3

MathSciNet review:
1219721

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Indexed by the integer lattice of dimension at least two, there exists a nondegenerate strictly stationary random field which is one-dependent with respect to "lattice-halfspaces" but which is also measurable with respect to its own tail sigma-field.

**[1]**R. C. Bradley,*A bilaterally deterministic*-*mixing stationary random sequence*, Trans. Amer. Math. Soc.**294**(1986), 233-241. MR**819945 (87h:60080)****[2]**-,*A caution on mixing conditions for random fields*, Statist. Probab. Lett.**8**(1989), 489-491. MR**1040812 (91h:60052)****[3]**-,*On the spectral density and asymptotic normality of weakly dependent random fields*, J. Theoret. Probab.**5**(1992), 355-373. MR**1157990 (93e:60094)****[4]**-,*Equivalent mixing conditions for random fields*, Ann. Probab. (in press).**[5]**A. V. Bulinskii,*On various conditions of mixing and asymptotic normality of random fields*, Soviet Math. Dokl.**37**(1988), 443-448. MR**943731 (89i:60104)****[6]**-,*Limit theorems under weak dependence conditions*, Moscow Univ. Press, Moscow, 1989. (Russian)**[7]**R. Burton, M. Denker, and M. Smorodinsky,*Finite state bilaterally deterministic strongly mixing processes*, Israel J. Math. (submitted). MR**1418290 (98b:60069)****[8]**R. L. Dobrushin,*The description of a random field by means of conditional probabilities and conditions of its regularity*, Theory Probab. Appl.**13**(1968), 197-224. MR**0231434 (37:6989)****[9]**V. F. Gaposhkin,*Moment bounds for integrals of*-*mixing fields*, Theory Probab. Appl.**36**(1991), 249-260.**[10]**C. M. Goldie and P. Greenwood,*Variance of set-indexed sums of mixing random variables and weak convergence of set-indexed processes*, Ann. Probab.**14**(1986), 817-839. MR**841586 (88e:60038b)****[11]**V. V. Gorodetskii,*The central limit theorem and an invariance principle for weakly dependent random fields*, Soviet Math. Dokl.**29**(1984), 529-532.**[12]**V. M. Gurevic,*On one-sided and two-sided regularity of stationary random processes*, Soviet Math. Dokl.**14**(1973), 804-808.**[13]**C. C. Neaderhouser,*An almost sure invariance principle for partial sums associated with a random field*, Stochastic Process. Appl.**11**(1981), 1-10. MR**608003 (82h:60059)****[14]**R. A. Olshen,*The coincidence of measure algebras under an exchangable probability*, Z. Wahrsch. Verw. Gebiete**18**(1971), 153-158. MR**0288797 (44:5992)****[15]**D. S. Ornstein and B. Weiss,*Every transformation is bilaterally deterministic*, Israel J. Math.**21**(1975), 154-158. MR**0382600 (52:3482)****[16]**M. Rosenblatt,*Stationary sequences and random fields*, Birkhäuser, Boston, MA, 1985. MR**885090 (88c:60077)****[17]**L. T. Tran,*Kernel density estimation on random fields*, J. Multivariate Anal.**34**(1990), 37-53. MR**1062546 (91j:62050)****[18]**I. G. Zhurbenko,*On mixing conditions for random processes with values in a Hilbert space*, Soviet Math. Dokl.**30**(1984), 465-467.**[19]**-,*The spectral analysis of time series*, North-Holland, Amsterdam, 1986. MR**860209 (87m:62273)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
60G60,
28D15,
60G25

Retrieve articles in all journals with MSC: 60G60, 28D15, 60G25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1219721-3

Keywords:
One-dependent,
deterministic,
strictly stationary random field

Article copyright:
© Copyright 1994
American Mathematical Society