Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On weighted Sobolev interpolation inequalities


Author: Seng-Kee Chua
Journal: Proc. Amer. Math. Soc. 121 (1994), 441-449
MSC: Primary 46E35; Secondary 26D20, 46M35
DOI: https://doi.org/10.1090/S0002-9939-1994-1221721-4
MathSciNet review: 1221721
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain some weighted Sobolev interpolation inequalities on $ {\mathbb{R}^n}$ and domains satisfying the Boman chain condition for doubling weights satisfying a weighted Poincaré inequality.


References [Enhancements On Off] (What's this?)

  • [1] Bogdan Bojarski, Remarks on Sobolev imbedding inequalities, Complex Analysis, Lecture Notes in Math., vol. 1351, Springer-Verlag, New York, 1989, pp. 52-68. MR 982072 (90b:46068)
  • [2] Richard Adams, Sobolev spaces, Academic Press, New York, 1975. MR 0450957 (56:9247)
  • [3] R. C. Brown and D. B. Hilton, Sufficient conditions for weighted inequalities of sum form, J. Math. Anal. Appl. 112 (1985), 563-578. MR 813620 (87d:26017)
  • [4] -, Weighted interpolation inequalities of sum and product form in $ {\mathbb{R}^n}$, Proc. London Math. Soc. (3) 56 (1988), 261-280. MR 922656 (89c:26027)
  • [5] -, Weighted interpolation inequalities and embeddings in $ {\mathbb{R}^n}$, Canad. J. Math. 62 (1990), 959-980.
  • [6] C. Carton-Lebrun and H. P. Heinig, Weighted norm inequalities involving gradients, Proc. Roy. Soc. Edinburgh Sect. A 112 (1989), 331-341. MR 1014662 (90g:42035)
  • [7] Sagun Chanillo and Richard L. Wheeden, Poincaré inequalities for a class of non-$ {A_p}$ weights, Indiana Math. J. 41 (1992), 605-623. MR 1189903 (93m:46035)
  • [8] Filippo Chiarenza and Michelle Frasca, A note on a weighted Sobolev inequality, Proc. Amer. Math. Soc. 93 (1985), 703-704. MR 776206 (86h:46052)
  • [9] Seng-Kee Chua, Extension theorems on weighted Sobolev spaces, Indiana Math. J. 41 (1992), 1027-1076. MR 1206339 (94a:46035)
  • [10] -, Extension and restriction theorems on weighted Sobolev spaces, Ph.D. Thesis, Rutgers University, 1991.
  • [11] -, Some remarks on extension theorems for weighted Sobolev spaces, Illinois J. Math. (to appear). MR 1245837 (94m:46057)
  • [12] -, Weighted Sobolev's inequalities on domains satisfying the chain condition, Proc. Amer. Math. Soc. 117 (1993), 449-457. MR 1140667 (93d:46050)
  • [13] -, On weighted Sobolev spaces (to appear).
  • [14] D. E. Edmunds, Alois Kufner, and Jiong Sun, Extension of functions in weighted Sobolev spaces, Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 16 (1990), 327-339. MR 1106583 (92i:46035)
  • [15] Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116. MR 643158 (84i:35070)
  • [16] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, New York, 1983. MR 737190 (86c:35035)
  • [17] V. M. Gol'dshtein and Yu. G. Reshetnyak, Quasiconformal mappings and Sobolev spaces, Kluwer, Dordrecht, 1990. MR 1136035 (92h:46040)
  • [18] Cristian E. Gutierrez and Richard L. Wheeden, Sobolev interpolation inequalities with weights, Trans. Amer. Math. Soc. 323 (1991), 263-281. MR 994166 (91c:46052)
  • [19] T. Iwaniec and C. A. Nolder, Hardy-Littlewood inequality for quasiregular mappings in certain domains in $ {\mathbb{R}^n}$, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 267-282. MR 802488 (87d:30022)
  • [20] Peter Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), 71-88. MR 631089 (83i:30014)
  • [21] Alois Kufner, Weighted Sobolev spaces, Wiley, New York, 1985. MR 802206 (86m:46033)
  • [22] -, How to define reasonable Sobolev spaces, Comment. Math. Univ. Carolin. 25 (1984), 537-554. MR 775568 (86i:46036)
  • [23] Olli Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), 383-401. MR 565886 (81i:30039)
  • [24] Vladimir G. Maz'ja, Sobolev spaces, Springer-Verlag, New York, 1985. MR 817985 (87g:46056)
  • [25] Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45:2461)
  • [26] Carlos Pérez, Two weighted norm inequalities for Riesz Potentials and uniform $ {L^p}$-weighted Sobolev inequalities, Indiana Math. J. 39 (1990), 31-44. MR 1052009 (92a:42024)
  • [27] Eric Sawyer and Richard L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), 813-874.
  • [28] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970. MR 0290095 (44:7280)
  • [29] Jan-Olov Stromberg and Alberto Torchinsky, Weighted Hardy spaces, Lecture Notes in Math., vol. 1381, Springer, New York, 1989. MR 1011673 (90j:42053)
  • [30] Alberto Torchinsky, Real-variable methods in harmonic analysis, Academic Press, New York, 1986. MR 869816 (88e:42001)
  • [31] Richard L. Wheeden and Antoni Zygmund, Measure and integral, Marcel Dekker, New York, 1977. MR 0492146 (58:11295)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E35, 26D20, 46M35

Retrieve articles in all journals with MSC: 46E35, 26D20, 46M35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1221721-4
Keywords: Poincaré inequalities, doubling weights, $ {A_p}$ weights, domains satisfying the Boman chain condition, Sobolev interpolation inequalities
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society