Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A factorization constant for $ l\sp n\sb p$, $ 0<p<1$

Author: N. T. Peck
Journal: Proc. Amer. Math. Soc. 121 (1994), 423-427
MSC: Primary 46A16; Secondary 46B07
MathSciNet review: 1233980
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if PT is a factorization of the identity operator on $ \ell _p^n$ through $ \ell _\infty ^k,0 < p$, then $ \left\Vert P \right\Vert \left\Vert T \right\Vert \geq C{n^{1/p - 1/2}}{(\log n)^{ - 1/2}}$. This is a corollary of a more general result on factoring the identity operator on a quasi-normed space X through $ \ell _\infty ^k$.

References [Enhancements On Off] (What's this?)

  • [1] J. Bourgain, J. Lindenstrauss, and V. Milman, Approximation of zonoids by zonotopes, Acta Math. 162 (1989), 73-141. MR 981200 (90g:46020)
  • [2] N. J. Kalton, The three-space problem for locally bounded F-spaces, Compositio Math. 37 (1978), 243-276. MR 511744 (80j:46005)
  • [3] G. Schechtman, More on embedding subspaces of $ \ell _r^n$, Compositio Math. 61 (1987), 159-170. MR 882972 (88c:46024)
  • [4] M. Talagrand, Embedding subspaces of $ {L_1}$ into $ \ell _1^N$, Proc. Amer. Math. Soc. 108 (1990), 363-369. MR 994792 (90f:46035)
  • [5] N. Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monograph Surveys Pure Appl. Math., vol. 38, Longman, Harlow, 1989. MR 993774 (90k:46039)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46A16, 46B07

Retrieve articles in all journals with MSC: 46A16, 46B07

Additional Information

Keywords: Factorization of the identity, $ \ell _p^n,0 < p < 1,\ell _\infty ^n$, factorization constant, Rademacher functions, Hahn-Banach extension
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society