Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An index formula for $ n$-tuple of shifts on polydisk


Author: Ke Ren Yan
Journal: Proc. Amer. Math. Soc. 121 (1994), 747-754
MSC: Primary 47A13; Secondary 47A53, 47B20
DOI: https://doi.org/10.1090/S0002-9939-1994-1185275-3
MathSciNet review: 1185275
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ ({M_{{z_1}}}, \ldots ,{M_{{z_n}}})$ be an n-tuple of shift operators on the polydisk $ {l^2}({{\mathbf{Z}}^n})$; we compress it to a variety of subspaces of $ {l^2}({{\mathbf{Z}}^n})$ that are combinatorially constructed. The main result is a multivariate Fredholm index formula, which links the indices of the n-tuples to their combinatorial data in the definitions of the subspaces.


References [Enhancements On Off] (What's this?)

  • [1] J. B. Conway, Subnormal operators, Res. Notes in Math., vol. 51, Pitman, New York, 1981. MR 634507 (83i:47030)
  • [2] R. E. Curto, Fredholm and invertible n-tuple of operators, The transformation problem, Trans. Amer. Math. Soc. 266 (1981), 129-159. MR 613789 (82g:47010)
  • [3] -, Spectral permanence for joint spectra, Trans. Amer. Math. Soc. 270 (1982), 659-665. MR 645336 (83i:46061)
  • [4] R. E. Curto and K. Yan, Spectral theory of Reinhardt measures, Bull. Amer. Math. Soc. (N.S.) 24 (1991), 379-385. MR 1071031 (91i:47008)
  • [5] -, The Taylor spectrum of infinite direct sums, Contemp. Math., vol. 120, Amer. Math. Soc., Providence, RI, 1991, pp. 19-27. MR 1126270 (92f:47004)
  • [6] R. G. Douglas and V. I. Paulsen, Hilbert modules over function algebras, Pitman Res. Notes in Math., vol. 127, Longman Sci. Tech., Harlow, 1989. MR 1028546 (91g:46084)
  • [7] M. Putinar, Spectral theory and sheaf theory. II, Math. Z. 192 (1986), 473-490. MR 845220 (87i:46152)
  • [8] -, Base change and the Fredholm index, Integral Equations Operator Theory 8 (1985), 674-692. MR 813356 (87j:47020)
  • [9] N. Salinas, The $ \bar \partial $-Fredholm and the $ {C^ \ast }$-algebra of the Bergman n-tuple, J. Operator Theory 22 (1989), 325-343. MR 1043731 (91b:47054)
  • [10] N. Salinas, A. Sheu, and H. Upmier, Toeplitz operators on pseudo-convex domains and foliation $ {C^\ast}$-algebras, Ann. of Math. (2) 130 (1989), 531-565. MR 1025166 (91e:47026)
  • [11] J. Taylor, A joint spectrum of several commuting operators, J. Funct. Anal. 6 (1970), 172-191. MR 0268706 (42:3603)
  • [12] -, The analytic functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38. MR 0271741 (42:6622)
  • [13] K. Yan, Hermitian sheaves and operator theory, preprint, 1992.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A13, 47A53, 47B20

Retrieve articles in all journals with MSC: 47A13, 47A53, 47B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1185275-3
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society