Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Locally finite and locally nilpotent derivations with applications to polynomial flows, morphisms and $ \mathcal{G}_a$-actions. II


Author: Arno van den Essen
Journal: Proc. Amer. Math. Soc. 121 (1994), 667-678
MSC: Primary 13B10; Secondary 14E05, 14E07, 34A34
DOI: https://doi.org/10.1090/S0002-9939-1994-1185282-0
MathSciNet review: 1185282
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper describes several applications of locally finite and locally nilpotent derivations; we recover the main results from the theory of polynomial flows, give a new inversion formula for polynomial automorphisms, reformulate the Eulerian conjecture for ordinary systems of differential equations in terms of locally nilpotent derivations, and give an algorithm to compute the invariant ring of a $ {\mathcal{G}_a}$-action on affine n-space (if this ring is finitely generated).


References [Enhancements On Off] (What's this?)

  • [1] K. Adjamagbo, On polynomiality or rationality of formal power series and Jacobian conjecture, Bull. Soc. Math. Belg. 43 (1991), 9-14. MR 1315766 (96a:13023)
  • [2] K. Adjamagbo and A. van den Essen, Eulerian systems of partial differential equations and the Jacobian conjecture, J. Pure Appl. Algebra 74 (1991), 1-15. MR 1129126 (92i:13022)
  • [3] H. Bass, A non-triangular action of $ {\mathcal{G}_a}$ on $ {\mathbb{A}^3}$, J. Pure Appl. Algebra 33 (1984), 1-5. MR 750225 (85j:14086)
  • [4] H. Bass and G. Meisters, Polynomial flows in the plane, Adv. Math. 55 (1985), 173-208. MR 772614 (86c:58127)
  • [5] A. Beauville, J.-L. Colliot-Thélène, J.-J. Sansuc, and P. Swinnerton-Dyer, Variétés stablemenet rationnelles non rationnelles, Ann. of Math. (2) 121 (1985), 283-318. MR 786350 (86m:14009)
  • [6] B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, Multidimensional Systems Theory (N. Bose, ed.), Reidel, Dordrecht, 1985.
  • [7] B. Coomes, Polynomial flows, symmetry groups, and conditions sufficient for injectivity of maps, Ph.D. thesis, Univ. Nebraska, Lincoln, 1988.
  • [8] -, The Lorenz system does not have a polynomial flow, J. Differential Equations 82 (1989), 386-407. MR 1027976 (91b:58213)
  • [9] -, Polynomial flows on $ {\mathbb{C}^n}$, Trans. Amer. Math. Soc. 320 (1990), 493-506. MR 998353 (90k:58180)
  • [10] B. Coomes and V. Zurkowski, Linearization of polynomial flows and spectra of derivations, J. Dynamics Differential Equations 3 (1990), 29-66. MR 1094723 (92m:34002)
  • [11] J. Deveney and D. Finston, Fields of $ {\mathcal{G}_a}$-invariants are ruled, Canad. Bull. Math. (to appear). MR 1818660 (2001m:14070)
  • [12] -, Rationally triangulable automorphisms, J. Pure Appl. Algebra 72 (1991), 1-4. MR 1115562 (92m:14062)
  • [13] A. van den Essen, Locally finite and locally nilpotent derivations with applications to polynomial flows and polynomial morphisms, Proc. Amer. Math. Soc. 116 (1992), 861-871. MR 1111440 (93a:13003)
  • [14] -, An algorithm to compute the invariant ring of a $ {\mathcal{G}_a}$-action on an affine variety, Report 9202, Catholic Univ., Nijmegen; J. Symbolic Comput. (to appear).
  • [15] H. Kraft, Algebraic automorphisms of affine space, Topological Methods in Algebraic Transformation Groups, Birkhäuser, Boston, 1989. MR 1040858 (91g:14044)
  • [16] G. Meisters, Jacobian problems in differential equations and algebraic geometry, Rocky Mountain J. Math. 12 (1982), 679-705. MR 683862 (84c:58048)
  • [17] -, Polynomial flows on $ {\mathbb{R}^n}$, Banach Center Publ., vol. 23, PWN, Warsaw, 1989, pp. 9-24.
  • [18] -, Inverting polynomial maps of n-space by solving differential equations, Proc. Conf. Differential and Delay Equations (Iowa State Univ., October 18-19, 1991), World Sci. Publ., Singapore and Teaneck, NJ, 1992. MR 1170148 (93g:34072)
  • [19] G. Meisters and C. Olech, A polyflow formulation of the Jacobian conjecture, Bull. Polish Acad. Sci. Math. 35 (1987), 725-731. MR 961711 (89j:13005)
  • [20] M. Nagata, On the fourteenth problem of Hilbert, Proc. Internat. Congr. Math. 1958, Cambridge Univ. Press, New York, 1966, pp. 459-462. MR 0116056 (22:6851)
  • [21] -, Lectures on the fourteenth problem of Hilbert, Lecture Notes in Math., vol. 31, Tata Institute, Bombay, 1965. MR 0215828 (35:6663)
  • [22] P. Nousiainen and M. Sweedler, Automorphisms of polynomial and power series rings, J. Pure Appl. Algebra 29 (1983), 93-97. MR 704289 (84i:13004)
  • [23] V. Popov, On actions of $ {\mathcal{G}_a}$ on $ {\mathbb{A}^n}$, Algebraic Groups (Utrecht, 1986), Lecture Notes in Math., vol. 1271, Springer-Verlag, Berlin, Heidelberg, and New York, 1987. MR 911143 (88k:14030)
  • [24] R. Rentschler, Opérations du groupe additif sur le plan affine, C. R. Acad. Sci. Paris 267 (1968), 384-387. MR 0232770 (38:1093)
  • [25] D. Shannon and M. Sweedler, Using Gröbner bases to determine algebra membership, split surjective algebra homomorphisms and determine birational equivalence, J. Symbolic Comput. 6 (1988), 267-273. MR 988417 (90e:13002)
  • [26] D. Snow, Unipotent actions on affine space, Topological Methods in Algebraic Transformation Groups, Birkhäuser, Boston, 1989. MR 1040863 (91f:14048)
  • [27] R. Weitzenböck, Über die Invarianten von Linearen Gruppen, Acta Math. 58 (1962), 231-293. MR 1555349
  • [28] O. Zariski, Interpretations algebrico-geometriques du quatorzième problem de Hilbert, Bull. Sci. Math. (2) 78 (1954), 155-168. MR 0065217 (16:398c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13B10, 14E05, 14E07, 34A34

Retrieve articles in all journals with MSC: 13B10, 14E05, 14E07, 34A34


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1185282-0
Keywords: Derivations, polynomial automorphisms, flows, Eulerian systems
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society