Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Hausdorff dimension of elliptic and elliptic-caloric measure in $ {\bf R}\sp N,\;N\geq 3$


Author: Caroline Sweezy
Journal: Proc. Amer. Math. Soc. 121 (1994), 787-793
MSC: Primary 35J25; Secondary 30C85, 31A15, 35K20
DOI: https://doi.org/10.1090/S0002-9939-1994-1186138-X
MathSciNet review: 1186138
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The existence of an L-caloric measure with parabolic Hausdorff dimension $ 4 - \varepsilon $ in $ {{\mathbf{R}}^2} \times {{\mathbf{R}}^1}$ is demonstrated. The method is to use a specially constructed quasi-disk Q whose boundary has Hausdorff $ \dim = 2 - \varepsilon $. There is an elliptic measure supported on the entire boundary of Q. Then the L-caloric measure on $ {\partial _p}Q \times [0,T]$ is compared with the corresponding elliptic measure. The same method gives the existence of an elliptic measure in $ {{\mathbf{R}}^n}$ whose support has Hausdorff $ \dim n - \varepsilon $ for $ n \geq 3$, and an L-caloric measure in $ {{\mathbf{R}}^n} \times {{\mathbf{R}}^1}$ supported on a set of parabolic Hausdorff dimension $ n + 2 - \varepsilon $.


References [Enhancements On Off] (What's this?)

  • [1] D. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa 22 (1968), 607-694. MR 0435594 (55:8553)
  • [2] L. Caffarelli, E. Fabes, S. Mortola, and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J. 30 (1981), 621-640. MR 620271 (83c:35040)
  • [3] E. Fabes, N. Garofalo, and S. Salsa, A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations, Illinois J. Math. 30 (1986), 536-565. MR 857210 (88d:35089)
  • [4] D. Jerison and C. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. Math. 46 (1982), 80-147. MR 676988 (84d:31005b)
  • [5] P. Jones and T. Wolff, Hausdorff dimension of harmonic measures in the plane, Acta Math. 161 (1988), 131-144. MR 962097 (90j:31001)
  • [6] J. M. Marstrand, The dimension of Cartesian product sets, Math. Proc. Cambridge Philos. Soc. 50 (1954), 198-202. MR 0060571 (15:691g)
  • [7] S. Salsa, Some properties of nonnegative solutions of parabolic differential operators, Ann. Mat. Pura Appl. 128 (1981), 193-206. MR 640782 (83j:35078)
  • [8] C. Sweezy, The Hausdorff dimension of elliptic measure--a counterexample to the Oksendahl conjecture in $ {{\mathbf{R}}^2}$, Proc. Amer. Math. Soc. 116 (1992), 361-368. MR 1161401 (93f:42040)
  • [9] S. J. Taylor and N. A. Watson, A Hausdorff measure classification of polar sets for the heat equation, Math. Proc. Cambridge Philos. Soc. 97 (1985), 325-344. MR 771826 (86m:35077)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35J25, 30C85, 31A15, 35K20

Retrieve articles in all journals with MSC: 35J25, 30C85, 31A15, 35K20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1186138-X
Keywords: L-caloric measure, parabolic Hausdorff dimension, NTA domains
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society