Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Moments of the lifetime of conditioned Brownian motion in cones


Authors: Burgess Davis and Biao Zhang
Journal: Proc. Amer. Math. Soc. 121 (1994), 925-929
MSC: Primary 60J65; Secondary 60J05
DOI: https://doi.org/10.1090/S0002-9939-1994-1195717-5
MathSciNet review: 1195717
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \tau $ be the time it takes standard d-dimensional Brownian motion, started at a point inside a cone $ \Gamma $ in $ {\mathbb{R}^d}$ which has aperture angle $ \theta $, to leave the cone. Burkholder has determined the smallest p, denoted $ p(\theta ,d)$, such that $ E{\tau ^p} = \infty $. We show that if $ y \in \partial \Gamma $ then the smallest p, such that $ E({\tau ^p}\vert{B_\tau } = y) = \infty $, is $ p = 2p(\theta ,d) + (d - 2)/2$.


References [Enhancements On Off] (What's this?)

  • [1] D. L. Burkholder, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Adv. Math. 26 (1977), 182-205. MR 0474525 (57:14163)
  • [2] M. Cranston, Lifetime of conditioned Brownian motion in Lipschitz domains, Z. Wahrsch. Verw. Gebiete 70 (1985), 335-340. MR 803674 (87a:60088)
  • [3] B. Davis, Conditioned Brownian motion in planar domains, Duke Math. J. 57 (1988), 397-421. MR 962513 (89j:60112)
  • [4] R. D. DeBlassie, Exit times from cones in $ {\mathbb{R}^n}$ of Brownian motion, Probab. Theory Related Fields 74 (1987), 1-29. MR 863716 (88d:60205)
  • [5] J. L. Doob, Classical potential theory and its probabilistic counterpart, Springer, New York, 1984. MR 731258 (85k:31001)
  • [6] L. L. Helms, Introduction to potential theory, Wiley, New York, 1969. MR 0261018 (41:5638)
  • [7] D. S. Jerison and C. E. Kenig, Boundary value problems on Lipschitz domain, Partial Differential Equations (Walter Littman, ed.), MAA Stud. Math., vol. 23, Math. Assoc. Amer., Washington, DC, 1982, pp. 1-68. MR 716504 (85f:35057)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60J65, 60J05

Retrieve articles in all journals with MSC: 60J65, 60J05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1195717-5
Keywords: Conditioned Brownian motion, h-processes
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society