On induced characters

Author:
Yakov Berkovich

Journal:
Proc. Amer. Math. Soc. **121** (1994), 679-685

MSC:
Primary 20C15

MathSciNet review:
1203979

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that *H* is a normal subgroup of a finite group G, , and is the set of all irreducible constituents of the induced character . If then is solvable.

**[1]**Ya. G. Berkovich,*Relations between the class numbers of a finite group and of a subgroup*, Problems in group theory and homological algebra (Russian), Yaroslav. Gos. Univ., Yaroslavl′, 1985, pp. 49–61, 164 (Russian). MR**881835****[2]**Ya. G. Berkovich,*Degrees of irreducible characters and normal 𝑝-complements*, Proc. Amer. Math. Soc.**106**(1989), no. 1, 33–35. MR**952314**, 10.1090/S0002-9939-1989-0952314-X**[3]**I. N. Herstein,*A remark on finite groups*, Proc. Amer. Math. Soc.**9**(1958), 255–257. MR**0093542**, 10.1090/S0002-9939-1958-0093542-8**[4]**B. Huppert,*Endliche Gruppen. I*, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR**0224703****[5]**I. Martin Isaacs,*Character theory of finite groups*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Pure and Applied Mathematics, No. 69. MR**0460423****[6]**G. A. Miller and H. C. Moreno,*Non-abelian groups in which every subgroup is abelian*, Trans. Amer. Math. Soc.**4**(1903), no. 4, 398–404. MR**1500650**, 10.1090/S0002-9947-1903-1500650-9**[7]**K. R. Nekrasov and Ya. G. Berkovich,*Finite groups with large sums of degrees of irreducible characters*, Publ. Math. Debrecen**33**(1986), no. 3-4, 333–354 (Russian). MR**883763**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20C15

Retrieve articles in all journals with MSC: 20C15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1203979-0

Article copyright:
© Copyright 1994
American Mathematical Society