On induced characters

Author:
Yakov Berkovich

Journal:
Proc. Amer. Math. Soc. **121** (1994), 679-685

MSC:
Primary 20C15

DOI:
https://doi.org/10.1090/S0002-9939-1994-1203979-0

MathSciNet review:
1203979

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that *H* is a normal subgroup of a finite group G, , and is the set of all irreducible constituents of the induced character . If then is solvable.

**[1]**Ya. G. Berkovich,*Relation between numbers of classes of a group and its subgroups*, Questions of Group Theory and Homological Algebra, Jaroslavl, 1985, pp. 49-61. (Russian) MR**881835 (88f:20038)****[2]**-,*Degrees of irreducible characters and normal p-complements*, Proc. Amer. Math. Soc.**106**(1989), 33-35. MR**952314 (89i:20018)****[3]**I. N. Herstein,*Remark on finite groups*, Proc. Amer. Math. Soc.**9**(1958), 255-257. MR**0093542 (20:66)****[4]**B. Huppert,*Endliche Gruppen*, Bd. 1, Springer, Berlin, 1967. MR**0224703 (37:302)****[5]**I. M. Isaacs,*Character theory of finite groups*, Academic Press, New York, 1976. MR**0460423 (57:417)****[6]**G. A. Miller and H. Moreno,*Non-abelian groups in which every subgroup is abelian*, Trans. Amer. Math. Soc.**4**(1903), 398-404. MR**1500650****[7]**K. G. Nekrasov and Ya. G. Berkovich,*Finite groups with large sums of degrees of irreducible characters*, Publ. Math. Debrecen**33**(1986), 333-354. (Russian) MR**883763 (88d:20017)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20C15

Retrieve articles in all journals with MSC: 20C15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1203979-0

Article copyright:
© Copyright 1994
American Mathematical Society