Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Nodal sets for sums of eigenfunctions on Riemannian manifolds

Author: Harold Donnelly
Journal: Proc. Amer. Math. Soc. 121 (1994), 967-973
MSC: Primary 58G25
MathSciNet review: 1205487
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Quantitative versions of unique continuation are proved for finite sums of eigenfunctions of the Laplacian on compact Riemannian manifolds. The results include a lower bound for the order of vanishing, a growth estimate for the supremum on compact balls, and a gradient bound. For real analytic metrics, an upper bound for the Hausdorff measure of the zero set is derived.

References [Enhancements On Off] (What's this?)

  • [1] N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations of second order, J. Math. Pures Appl. 36 (1957), 235-249. MR 0092067 (19:1056c)
  • [2] H. Cordes, Über die eindeutige Bestimmtheit Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 11 (1956), 239-258. MR 0086237 (19:148a)
  • [3] H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math. 93 (1988), 161-183. MR 943927 (89m:58207)
  • [4] L. Hörmander, Linear partial differential operators, Springer-Verlag, Berlin, Heidelberg, and New York, 1963. MR 0161012 (28:4221)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G25

Retrieve articles in all journals with MSC: 58G25

Additional Information

Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society