Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Gauge invariant functions of connections

Author: Ambar Sengupta
Journal: Proc. Amer. Math. Soc. 121 (1994), 897-905
MSC: Primary 58D20; Secondary 53C07, 53C80, 58D19, 81T13
MathSciNet review: 1215205
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that, for certain gauge groups, central functions of the holonomy variables do not determine connections up to gauge equivalence. It is also shown that, for a large class of compact groups, such functions do determine connections up to gauge equivalence. It is then shown that, for the latter type of gauge groups, the Euclidean quantum gauge field measure is determined by the expectation values of the Wilson loop variables (products of characters evaluated on holonomies).

References [Enhancements On Off] (What's this?)

  • [Bu1] W. Burnside, Theory of groups of finite order, 2nd ed., Dover, New York, 1911. MR 0069818 (16:1086c)
  • [Bu2] -, Proc. London Math. Soc. (2) 11 (1913), 40.
  • [Dr] B. K. Driver, Classification of bundle connection pairs by parallel translation and lassos, J. Funct. Anal. 83 (1989), 185-231. MR 993446 (90b:58033)
  • [Du] B. Durhuus, On the structure of gauge invariant classical observables in lattice gauge theories, Lett. Math. Phys. 4 (1980), 515-522. MR 599715 (82b:81087)
  • [Fr] J. Frohlich, On the construction of quantized gauge fields, Field Theoretical Methods in Particle Physics (W. Ruhl, ed.), Plenum Press, New York, 1980. MR 713433 (84j:81075)
  • [Gi] R. Giles, Reconstruction of gauge potentials from Wilson loops, Phys. Rev. D 24 (1981), 216-2168. MR 632522 (82i:81112)
  • [GKS] C. King, L. Gross, and A. Sengupta, Two dimensional Yang-Mills theory via stochastic differential equations, Ann. Physics 194 (1989), 65-112. MR 1015789 (90i:81058)
  • [KN] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I, Wiley, New York, 1963. MR 1393940 (97c:53001a)
  • [Ko] S. Kobayashi, La connexion des varietes fibrees, C. R. Acad. Sci. Paris Sér. I Math. 238 (1954), 443-444. MR 0060889 (15:743f)
  • [Pr] C. Procesi, The invariant theory of $ n \times n$ matrices, Adv. Math. 19 (1976), 306-381. MR 0419491 (54:7512)
  • [Sei] E. Seiler, Gauge theories as a problem of constructive quantum field theory and statistical mechanics, Springer-Verlag, New York, 1982. MR 785937 (86g:81084)
  • [Va] V. S. Varadarajan, Geometry of quantum theory, Springer-Verlag, New York, 1985. MR 805158 (87a:81009)
  • [We] H. Weyl, Group theory and quantum mechanics, Dover, New York, 1950.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58D20, 53C07, 53C80, 58D19, 81T13

Retrieve articles in all journals with MSC: 58D20, 53C07, 53C80, 58D19, 81T13

Additional Information

Keywords: Gauge invariance, Wilson loops, quantum gauge field
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society