Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cyclic approximation of irrational rotations


Author: A. Iwanik
Journal: Proc. Amer. Math. Soc. 121 (1994), 691-695
MSC: Primary 28D05; Secondary 58F11
DOI: https://doi.org/10.1090/S0002-9939-1994-1221724-X
MathSciNet review: 1221724
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that an irrational number $ \alpha $ admits a rational approximation $ \vert\alpha - p/q\vert = o(f(q))$ iff the irrational rotation $ Tx = \{ x + \alpha \} $ admits cyclic approximation with speed $ o(f(n))$. As an application to earlier results we obtain that a generic Anzai skew product over every irrational rotation is rank-1 and for a.e. $ \alpha $ most skew products admit cyclic approximation with speed $ o(1/{n^2}\log n)$.


References [Enhancements On Off] (What's this?)

  • [1] A. del Junco, Transformations with discrete spectrum are stacking transformations, Canad. J. Math. 28 (1976), 836-839. MR 0414822 (54:2914)
  • [2] A. del Junco, A. Fieldsteel, and K. Park, Residual properties of $ \alpha $-flows, preprint.
  • [3] A. Iwanik and J. Serafin, Most monothetic extensions are rank-1, Colloq. Math. 66 (1993), 63-76. MR 1242646 (95c:28015)
  • [4] A. Katok, Constructions in ergodic theory, preprint.
  • [5] A. Katok and A. Stepin, Approximations in ergodic theory, Uspekhi Mat. Nauk 22 (1967), 81-106; English transl., Russian Math. Surveys 22 (1967), 77-102. MR 0219697 (36:2776)
  • [6] A. Ya. Khintchin, Continued fractions, Univ. of Chicago Press, Chicago, 1964.
  • [7] E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314. MR 700773 (85a:28014)
  • [8] -, Non-Abelian extensions have nonsimple spectrum, Compositio Math. 65 (1988), 155-170. MR 932641 (90i:28032)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28D05, 58F11

Retrieve articles in all journals with MSC: 28D05, 58F11


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1221724-X
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society