ON THE DIMENSIONAL PROPERTIES
OF THE STONE-ČECH REMAINDER OF P_0-SPACES

H. ATTIA

(Communicated by James E. West)

Abstract. A space X is called a P_0-space if there exists a perfect mapping f from X onto a metric space Y such that $\dim f = \sup \{f^{-1}(y) : y \in Y\} = 0$. We prove that the P_0-space X is almost weakly infinite dimensional iff the remainder $\beta X \setminus X$ of the Stone-Cech compactification βX of X is ω-weakly infinite dimensional. Furthermore we prove that $\Delta(\beta X \setminus X) = \text{ind}(\beta X \setminus X) = \text{Ind}(\beta X \setminus X) = \dim(\beta X \setminus X)$ for the P_0-space X.

0. Introduction

Unless stated otherwise, all spaces under consideration are normal. Our terminology follows [1, 7]. A closed continuous mapping $f: X \to Y$ is perfect if the inverse image $f^{-1}(y)$ of any point $y \in Y$ is compact. A Tychonoff space X is a paracompact P-space if it can be mapped perfectly onto a metrizable space [3]. A subclass of the class of P-spaces, namely, P_0-spaces, is introduced and investigated in [5, 11]. A space X is called a P_0-space if there exists a perfect mapping f from X onto a metric space Y such that $\dim f = \sup \{\dim f^{-1}(y) : y \in Y\} = 0$. A mapping $f: X \to Y$ is called n-multiple if $|f^{-1}(y)| \leq n$ for every $y \in Y$. The set C is a partition between sets A and B in the space X if there exist open disjoint sets V and W satisfying the conditions $A \subseteq V$, $B \subseteq W$, and $X \setminus C = V \cup W$. A space X is said to be weakly infinite dimensional or ω-weakly infinite dimensional if for every sequence $\{(A_i, B_i) : i \in \mathbb{N}\}$ of pairs of disjoint closed subsets of X, there exists a sequence $\{C_i : i \in \mathbb{N}\}$ such that $\bigcap \{C_i : i \in \mathbb{N}\} = \emptyset$, where C_i is a partition between A_i and B_i in X for all $i \in \mathbb{N}$.

1. Auxiliary assertions

Theorem 1.1. Consider a perfect mapping $f: X \to Y$ from a Tychonoff space X onto a space Y such that the set $F = \text{Cl}(\{y \in Y : |f^{-1}(y)| > n\})$ is compact. Then the mapping $\bar{f}(\beta X \setminus X)$ is n-multiple, where $\bar{f}: \beta X \to \beta Y$ is the continuous extension of the mapping f on Stone-Čech compactifications of the spaces X and Y.

Received by the editors June 17, 1991.

1991 Mathematics Subject Classification. Primary 54F45, 54D40, 54E18.

Key words and phrases. P_0-spaces, dimension, almost weakly infinite dimensional, remainder.
Proof. Let $y_0 \in \beta Y \setminus Y$ and assume $|\hat{f}^{-1}(y_0)| > n$. Consider distinct points $x_0, x_1, \ldots, x_n \in \hat{f}^{-1}(y_0)$. There exists a continuous mapping $h: \beta X \to [-1, 3n]$, where $h^{-1}(-1) \supseteq f^{-1} F$ and $h(x_k) = 3k$ for all $k \leq n$. Put $\Phi_i = h^{-1}[3i-1, 3i+1]$. We shall prove that there exist closed sets H_0, H_1, \ldots, H_n in X such that $H_i \subseteq \Phi_i$, $x_i \in \text{Cl}_{\beta X} H_i$, and $f H_i \cap f H_j = \emptyset$, for all $i \neq j$ and $i, j \leq n$. We have $\bigcap \{f (X \cap \Phi_i): i \leq n\} = \emptyset$.

Suppose there exists a subset $L \subseteq \{0, 1, 2, \ldots, n\}$ such that $|L| > 2$, $\Phi_L = \bigcap \{f (X \cap \Phi_i): i \in L\} \neq \emptyset$, and $\Phi_L \cap \hat{f} \Phi_i = \emptyset$ for all $j \notin L$. If $j \notin L$, then $y_0 \in \text{Cl}_{\beta X} f (\Phi_j \cap X)$ and $\text{Cl}_{\beta Y} \Phi_L \cap \text{Cl}_{\beta Y} f (\Phi_j \cap X) = \emptyset$. Thus $y_0 \notin \text{Cl}_{\beta Y} \Phi_L$, and there exists an open set V in βY such that $y_0 \in V$ and $\text{Cl}_{\beta Y} V \cap \text{Cl}_{\beta Y} \Phi_L = \emptyset$. Put $\Phi_i^1 = \Phi_i \cap \text{Cl}_{\beta X} \hat{f}^{-1}(V)$. Then $\bigcap \{f (X \cap \Phi_i^1): i \in L\} = \emptyset$ and $x_j \in \text{Cl}_{\beta X} (\Phi_j \cap X)$ for all $i \leq n$. Repeat this process a finite number of times to construct closed sets $\{\Phi_i^k: i \leq n\}$ in βX such that $\Phi_i^k \subseteq \Phi_i^{k-1} \subseteq \Phi_i$, $x_i \in \text{Cl}_{\beta X} (\Phi_i \cap X)$, and $f (\Phi_i^k \cap X) \cap f (\Phi_j^k \cap X) = \emptyset$ for all $i, j \leq n$ and $i \neq j$. Then the sets $\{H_i = f (\Phi_i \cap X): i \leq n\}$ are closed, disjoint in Y and $y_0 \in \bigcap \{\text{Cl}_{\beta Y} H_i: i \leq n\}$. This fact contradicts the normality of the space Y. The proof is therefore completed. The case $F = \emptyset$ is studied in [10].

The mapping $f: X \to Y$ is called locally multifinite if for every point $x \in X$ there exists a neighbourhood O_x of the point x and a number $n \in N$ such that $\sup \{|f(x)(y)|: y \in O_x\} = n$.

Proposition 1.2. Consider a perfect mapping $f: X \to Y$ from a space X onto a space Y such that the set $F \subseteq Y$ is compact and for every open set U in Y with $F \subseteq U$, there exists a number $n \in N$ such that $|f^{-1}(y)| \leq n$ for all $y \in Y \setminus U$. Then the mapping $f (\beta X \setminus f^{-1} F)$ is locally multifinite, where $\hat{f}: \beta X \to \beta Y$ is the continuous extension of the mapping f on Stone-Cech compactifications of X and Y.

Proof. Consider a point $y_0 \in \beta Y \setminus F$. There exist a closed set $\Phi \subseteq Y$ and a number $n \in N$ such that $y_0 \in \text{Cl}_{\beta Y} \Phi$, $F \subseteq \text{int} \Phi$, and $|f^{-1}(y)| \leq n$ for all $y \in Y \setminus \Phi$. Put $Y_1 = Y \cup \text{Cl}_{\beta X} \Phi$, $X_1 = \hat{f}^{-1} Y_1$, and $g = \hat{f} |X_1$. The space Y_1 is normal, $\beta Y_1 = \beta Y$, and $\beta X_1 = \beta X$. Theorem 1.1 completes the proof.

Proposition 1.3. If $\{X_n: n \in N\}$ are closed subspaces of the P_0-space X, then there exist a metric space Z and a perfect mapping $f: X \to Z$ onto Z such that $\dim f = 0$ and $\dim f X_n \leq \dim X_n$ for all $n \in N$.

Proof. Consider a perfect mapping $g: X \to Z$ onto a metric space Z such that $\dim g = 0$. By using Arhangelskii's factorization theorem [2] there exist a metric space Y and continuous mappings $f: X \to Y$, $h: Y \to Z$ such that $g = h \circ f$ and $\dim f X_n \leq \dim X_n$ for all $n \in N$. Clearly $\dim f \leq \dim g \leq 0$. Using the method introduced in [5] we construct the mapping f, which will be perfect.

Proposition 1.4 [11]. Let $f: X \to Y$ and $g: Z \to Y$ be perfect mappings. Put $P = \Gamma(X, Y, Z, f, g) = \{(x) \times g^{-1}(f(x)): x \in X\} \subseteq X \times Z$, $\hat{f}: P \to Z$, and $\hat{g}: P \to X$ such that $\hat{f}(x, z) = z$ and $\hat{g}(x, z) = x$ for all $(x, z) \in P$. Then

1. The mappings \hat{f} and \hat{g} are perfect;
2. If $\dim f = 0$ and $\dim Z = 0$, then $\dim P = 0$;
3. $|g^{-1}(f(x))| = |\hat{g}^{-1}(x)|$ for all $x \in X$.
Proposition 1.5. If \(\{X_n: n \in \mathbb{N}\} \) are finite-dimensional closed subspaces of the \(P_0 \)-space \(X \), then there exist a space \(Z \) and perfect mapping \(h: Z \to X \) onto \(X \) such that

1. \(\dim Z = 0 \) and the space \(Z \) is paracompact;
2. \(|h^{-1}(x)| \leq 1 + \dim X_n \) for all \(x \in X_n \) and \(n \in \mathbb{N} \).

Proof. Using Proposition 1.3 there exist a metric space \(Y \) and a perfect mapping \(f: X \to Y \) such that \(\dim f = 0 \) and \(\dim fX_n \leq \dim X_n \) for all \(n \in \mathbb{N} \). By Arhangel'skii's factorization theorem [4] there exist a metric space \(S \) such that \(\dim S = 0 \) and an open compact mapping \(\psi: S \to Y \) onto the space \(Y \). Nedev [9] proved that there exists a closed subspace \(S_1 \subset S \) such that \(\psi S_1 = Y \), the mapping \(g = \psi|S_1 \) is perfect, and \(|g^{-1}(y)| \leq 1 + \dim fX_n \) for all \(y \in fX_n \). Put \(Z = \Gamma(X, Y, S_1, f, g) \) and \(h = g \), where \(g: Z \to Y \) is defined by \(g(x, z) = z \) for all \((x, z) \in Z \). Proposition 1.4 completes the proof.

A space \(X \) is almost \(n \)-dimensional if there exists a compact set \(C \subset X \) such that \(\dim Y \leq n \) for every closed set \(Y \) in \(X \) contained in \(X \setminus C \).

From the results of the work [6], it follows that

Theorem 1.6. If the \(P_0 \)-space \(X \) is almost \(n \)-dimensional, then there exists a compact \(G_\delta \)-set \(F \) of \(X \) such that \(\dim (X \setminus F) = n \).

2. **Fundamental results**

For a Tychonoff space \(X \) we define the dimension function \(\Delta X \) as follows: \(\Delta X \leq n \) if there exist a space \(Z \) such that \(\dim Z = 0 \) and a \((n + 1)\)-multiple closed continuous mapping \(f: Z \to X \) onto the space \(X \). The considered invariant \(\Delta X \) is introduced first by Ponamarev [12] by using directed families of closed covers. The above definition of the dimension function \(\Delta X \) is equivalent to the definition of Ponamarev, which is introduced by Pasynkov [10].

Theorem 2.1. For every \(P_0 \)-space \(X \) the following equalities hold:

\[
\dim(\beta X \setminus X) = \text{Ind}(\beta X \setminus X) = \text{ind}(\beta X \setminus X) = \Delta(\beta X \setminus X).
\]

Proof. Put \(X^* = \beta X \setminus X \). The space \(X^* \) is Lindelöf [8] since every compact subset of \(X \) is contained in a compact subset of countable character (i.e., the space \(X \) is of countable type). Hence \(\dim X^* \leq \text{ind} X^* \leq \text{Ind} X^* \leq \Delta X^* \). If \(\dim X^* = n \), then there exists a compact \(G_\delta \)-set \(F \subset X \) such that \(\dim (X \setminus F) = n \) [6]. Thus \(X \setminus F = \bigcup \{X_m: m \in \mathbb{N}\} \), where the sets \(X_m \) are closed in \(X \) and \(\dim X_m \leq n \). By Proposition 1.5 there exist a space \(Z \) and a perfect mapping \(h: Z \to X \) such that \(\dim Z = 0 \) and \(|h^{-1}(x)| \leq n + 1 \) for all \(x \in X \setminus F \).

Consider a continuous extension mapping \(\beta h: \beta Z \to X \) of the mapping \(h \). The set \(Cl(\{x \in X: |h_1(x)| \geq n + 2\}) \) is compact and contained in \(F \). By Theorem 1.1 it follows that \(|\beta h_1(x)| \leq n + 1 \) for all \(x \in X^* \). The space \(Z^* = \beta Z \setminus Z \) is Lindelöf. Thus \(\dim Z^* \leq \dim \beta Z = \dim Z = 0 \). The mapping \(g = h|Z^*: Z^* \to X^* \) is closed and \(|g^{-1}(x)| \leq n + 1 \). Thus \(\Delta X^* \leq n \). Hence \(n \leq \dim X^* \leq \text{ind} X^* \leq \text{Ind} X^* \leq \Delta X^* \leq n \). The proof is complete.

For every space \(X \) consider the notations

\[
R_n(X) = \{x: \text{loc dim}_x X \geq n\} \quad \text{and} \quad R_\infty(X) = \bigcap \{R_n(X): n \in \mathbb{N}\}.
\]
For a space X we define the following local dimensions:

1. $\text{loc} \Delta X < \infty$ if there exist a space Z such that $\dim Z = 0$ and a closed locally multifinite mapping f from Z onto X.
2. $\text{Loc} \Delta X < \infty$ if there exist a space Z such that $\dim Z = 0$ and a closed finite-dimensional mapping f from Z onto X.

Clearly $\text{Loc} \Delta X \leq \text{loc} \Delta X$ and $\text{loc} \dim X \leq \text{loc} \Delta X$ for every space X. If $\text{Loc} \Delta X < \infty$ and the space X is paracompact, then X is A-weakly infinite dimensional.

A space X is almost weakly infinite dimensional if there exists a compact set $F \subset X$ such that $\dim(X \setminus U) < \infty$ for every open set U in X containing F.

Theorem 2.2. For the P_0-space X the following statements are equivalent:

1. The space X is almost weakly infinite dimensional.
2. The set $R_\infty(X)$ is compact, and for every open set U in X with $R_\infty(X) \subset U$, there exists $n \in \mathbb{N}$ such that $R_n(X) \subset U$.
3. $\dim \Phi < \infty$ for every compact set $\Phi \subset \beta X \setminus X$.
4. $\Delta \Phi < \infty$ for every compact set $\Phi \subset \beta X \setminus X$.
5. Every compact set $\Phi \subset \beta X \setminus X$ is weakly infinite dimensional.
6. The space $\beta X \setminus X$ is A-weakly infinite dimensional.
7. $\text{loc} \Delta(\beta X \setminus X) < \infty$.
8. $\text{loc} \dim(\beta X \setminus X) < \infty$.
9. $\text{Loc} \Delta(\beta X \setminus X) < \infty$.

Proof. Implications $(1) \rightarrow (2) \rightarrow (3) \rightarrow (5) \rightarrow (1)$ follow from Theorem 3.6 in [6]. Implications $(9) \rightarrow (6) \rightarrow (5)$, $(7) \rightarrow (9)$, and $(7) \rightarrow (8) \rightarrow (6)$ are obvious. It remains to prove that $(2) \rightarrow (7)$. Using Arhangel'skii's factorization theorem and the theorem of Nedev as in the proof of Proposition 1.5, we construct a metric space Z such that $\dim Z = 0$ and a perfect mapping f from Z onto X such that $R_n(X) \supset \{x \in X: |f^{-1}(x)| \geq n + 1\}$. Proposition 1.2 completes the proof.

A space X is almost completely n-dimensional if the set $R_n(X)$ is not countably compact and there exists a compact set $F \subset X$ such that $\dim(X \setminus F) = \Delta(X \setminus F) = n$.

By the proof of Theorem 2.1 we establish the following fact.

Theorem 2.3. For the P_0-space X the following statements are equivalent:

1. The space X is almost n-dimensional.
2. The space X is almost completely n-dimensional.

References

11. ___, On the dimension of the spaces with transformed bicompact groups, Uspekhi Mat. Nauk 31 (1976), 112–120. (Russian)

12. V. I. Ponamarev, Projective spectra and continuous mappings and paracompacta, Mat. Sb. 60 (1963), 89–119; English transl. in Amer. Math. Soc. Transl. (2) 39 (1964), 133–164.

Department of Mathematics, Faculty of Science, Menoufia University, Shebin El-Koom, Egypt