The unitability of -prime lattice-ordered rings with squares positive

Author:
Jing Jing Ma

Journal:
Proc. Amer. Math. Soc. **121** (1994), 991-997

MSC:
Primary 06F25; Secondary 16W80

MathSciNet review:
1186988

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that an *l*-prime lattice-ordered ring with squares positive and an *f*-superunit can be embedded in a unital *l*-prime lattice-ordered ring with squares positive.

**[1]**Stuart A. Steinberg,*On the unitability of a class of partially ordered rings that have squares positive*, J. Algebra**100**(1986), no. 2, 325–343. MR**840580**, 10.1016/0021-8693(86)90080-3**[2]**Stuart A. Steinberg,*Unital 𝑙-prime lattice-ordered rings with polynomial constraints are domains*, Trans. Amer. Math. Soc.**276**(1983), no. 1, 145–164. MR**684499**, 10.1090/S0002-9947-1983-0684499-6**[3]**D. G. Johnson,*A structure theory for a class of lattice-ordered rings*, Acta Math.**104**(1960), 163–215. MR**0125141****[4]**Paul Conrad,*Some structure theorems for lattice-ordered groups*, Trans. Amer. Math. Soc.**99**(1961), 212–240. MR**0121405**, 10.1090/S0002-9947-1961-0121405-2**[5]**Jing Jing Ma,*On lattice-ordered rings with polynomial constraints*, J. Math. Res. Exposition**11**(1991), no. 3, 325–331 (Chinese, with English summary). MR**1123387****[6]**Stuart A. Steinberg,*On lattice-ordered rings in which the square of every element is positive*, J. Austral. Math. Soc. Ser. A**22**(1976), no. 3, 362–370. MR**0427198****[7]**Melvin Henriksen and J. R. Isbell,*Lattice-ordered rings and function rings*, Pacific J. Math.**12**(1962), 533–565. MR**0153709**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
06F25,
16W80

Retrieve articles in all journals with MSC: 06F25, 16W80

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1186988-X

Keywords:
Lattice-ordered ring,
*l*-prime *l*-ring,
unitability,
squares positive

Article copyright:
© Copyright 1994
American Mathematical Society