Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Multiple canonical decompositions of families of operators and a model of quasinormal families


Authors: Ximena Catepillán, Marek Ptak and Wacław Szymański
Journal: Proc. Amer. Math. Soc. 121 (1994), 1165-1172
MSC: Primary 47A99; Secondary 47B20
DOI: https://doi.org/10.1090/S0002-9939-1994-1189538-7
MathSciNet review: 1189538
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A general method of canonical decompositions of several operatorvalued functions (operators) is presented. A model of a family of doubly commuting quasinormal operators is constructed.


References [Enhancements On Off] (What's this?)

  • [1] W. B. Arveson, An invitation to $ {C^ \ast }$-algebras, Springer-Verlag, New York, Heidelberg, and Berlin, 1976.
  • [2] A. Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723-728. MR 0059483 (15:538c)
  • [3] J. B. Conway, The theory of subnormal operators, Math. Surveys Monographs, vol. 36, Amer. Math. Soc., Providence, RI, 1991. MR 1112128 (92h:47026)
  • [4] M. Fujii, M. Kajiwara, Y. Kato, and F. Kubo, Decompositions of operators in Hilbert spaces, Math. Japon. 21 (1976), 117-120. MR 0423107 (54:11088)
  • [5] A. Lubin, Weighted shifts in commuting normal extensions, J. Austral. Math. Soc. Ser. A 27 (1979), 17-26. MR 524154 (80j:47034)
  • [6] M. Slocinski, On the Wold-type decomposition of a pair of commuting isometries, Ann. Polon. Math. 37 (1980), 255-262. MR 587496 (83e:47031)
  • [7] W. Szymański, Decompositions of operator-valued functions in Hilbert spaces, Studia Math. 50 (1974), 265-280. MR 0377569 (51:13740)
  • [8] -, Antisymmetric operator algebras. II, Ann. Polon. Math. 37 (1980), 299-311.
  • [9] -, On the "symmetric commutant"--canonical decompositions of families of Hilbert space operators, Ark. Mat. 21 (1983), 205-215. MR 727344 (85g:47024)
  • [10] -, Dilations and subnormality, Proc. Amer. Math. Soc. 101 (1987), 251-259. MR 902537 (88k:47062)
  • [11] H. Wold, A study in analysis of stationary time series, Almqvist and Wiksells, Uppsala, 1983; 2nd ed., 1954. MR 0061344 (15:811d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A99, 47B20

Retrieve articles in all journals with MSC: 47A99, 47B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1189538-7
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society