Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A characterisation of absolutely continuous measures on topological semigroups


Author: Heneri A. M. Dzinotyiweyi
Journal: Proc. Amer. Math. Soc. 121 (1994), 1103-1109
MSC: Primary 22A10; Secondary 43A05
DOI: https://doi.org/10.1090/S0002-9939-1994-1189541-7
MathSciNet review: 1189541
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let S be a completely regular topological semigroup and $ \mu $ a bounded regular Borel measure on S. For a very large class of noncompact semigroups S, we show that the map $ x \to {\mu ^ \ast }\bar x$ of S into the space of bounded regular Borel measures on S is norm-continuous if and only if $ {\mu _0}f$ is a left uniformly continuous function on S, for all bounded continuous functions f on S. Here the function $ {\mu _0}f$ is given by

$\displaystyle {\mu _0}f(x): = \int {f(yx)d\mu (y)\quad {\text{on}}\;S.} $


References [Enhancements On Off] (What's this?)

  • [1] A. C. Baker and J. W. Baker, Algebras of Measures on a locally compact topological semigroup II, J. London Math. Soc. (2) 2 (1970), 651-659. MR 0274639 (43:402)
  • [2] H. A. M. Dzinotyiweyi, The analogue of the group algebra for topological semigroups, Pitman Advanced Publishing Program, Boston, London, and Melbourne, 1984. MR 742927 (85h:43001)
  • [3] -, Uniformly continuous functions on some topological semigroups, Quart. J. Math. Oxford Ser. 2 37 (1986), 11-16. MR 830625 (87c:22005)
  • [4] H. A. M. Dzinotyiweyi and A. C. M. van Rooij, A characterization of the group algebra of a noncompact locally compact topological group, Quart. J. Math. Oxford Ser. 2 41 (1990), 15-20. MR 1044752 (91c:22010)
  • [5] G. L. Itzkowitz, Uniform structure in topological groups, Proc. Amer. Math. Soc. 57 (1976), 363-366. MR 0404518 (53:8320)
  • [6] G. L. G. Sleijpen, Locally compact semigroups and continuous translations of measures, Proc. London Math. Soc. (2) 37 (1978), 75-97. MR 0499939 (58:17682a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22A10, 43A05

Retrieve articles in all journals with MSC: 22A10, 43A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1189541-7
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society