Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some fixed point theorems for composites of acyclic maps


Authors: Sehie Park, S. P. Singh and Bruce Watson
Journal: Proc. Amer. Math. Soc. 121 (1994), 1151-1158
MSC: Primary 47H10; Secondary 47H19, 54C60, 54H25
DOI: https://doi.org/10.1090/S0002-9939-1994-1189547-8
MathSciNet review: 1189547
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain fixed point theorems for a new class of multifunctions containing compact composites of acyclic maps defined on a convex subset of a locally convex Hausdorff topological vector space. Our new results are applied to approximatively compact, convex sets or to Banach spaces with the Oshman property.


References [Enhancements On Off] (What's this?)

  • [1] H. Ben-El-Mechaiekh, The coincidence problem for compositions of set-valued maps, Bull. Austral. Math. Soc. 41 (1990), 421-434. MR 1071044 (91h:47060)
  • [2] H. Ben-El-Mechaiekh and P. Deguire, Approximation of non-convex set-valued maps, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 379-384. MR 1096616 (92d:54058)
  • [3] -, General fixed point theorems for non-convex set-valued maps, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 433-438. MR 1096627 (92d:54059)
  • [4] F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301. MR 0229101 (37:4679)
  • [5] -, On a sharpened form of the Schauder fixed point theorem, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 4749-4751. MR 0463982 (57:3920)
  • [6] -, Coincidence theorems, minimax theorems, and variational inequalities, Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 67-80. MR 737389 (85k:47099)
  • [7] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234-240. MR 0251603 (40:4830)
  • [8] L. Górniewicz and A. Granas, Some general theorems in coincidence theory. I, J. Math. Pures Appl. (9) 60 (1981), 361-373. MR 646365 (83d:55005)
  • [9] L. Górniewicz and A. Granas, Topology of morphisms and fixed point problems for set-valued mappings, Fixed Point Theory and Applications (M. A. Théra and J. B. Baillon, eds.), Longman Sci. Tech., Essex, 1991, pp. 173-191.
  • [10] A. Granas and F.-C. Liu, Coincidences for set-valued maps and minimax inequalities, J. Math. Pures Appl. (9) 65 (1986), 119-148. MR 867668 (88d:54062)
  • [11] C. J. Himmelberg, Fixed points of compact multifunctions, J. Math. Anal. Appl. 38 (1972), 205-207. MR 0303368 (46:2505)
  • [12] M. Lassonde, On the use of KKM-multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97 (1983), 151-201. MR 721236 (84k:47049)
  • [13] -, Fixed points for Kakutani factorizable multifunctions, J. Math. Anal. Appl. 152 (1990), 46-60. MR 1072927 (91h:47062)
  • [14] -, Réduction du cas multivoque au cas univoque dans les problèmes de coincidence, Fixed Point Theory and Applications (M. A. Théra and J. B. Baillon, eds.), Longman Sci. Tech., Essex, 1991, pp. 293-302. MR 1122836 (92h:47086)
  • [15] S. Park, Fixed point theorems on compact convex sets in topological vector spaces, Contemp. Math., vol. 72, Amer. Math. Soc., Providence, RI, 1988, pp. 183-191. MR 956491 (89i:47111)
  • [16] -, Some coincidence theorems on acyclic multifunctions and applications to KKM theory, Proc 2nd Int. Conf. on Fixed Point Theory and Applications (Halifax, June 9-14, 1991) (K.-K. Tan, ed.), World Scientific, River Edge, NJ, 1992, pp. 248-277. MR 1190044 (93j:47087)
  • [17] -, Fixed point theory of multifunctions in topological vector spaces, J. Korean Math. Soc. 29 (1992), 191-208. MR 1157308 (93e:47079)
  • [18] -, Cyclic coincidence theorems for acyclic multifunctions on convex spaces, J. Korean Math. Soc. 29 (1992), 333-339. MR 1180660 (93j:47088)
  • [19] M. J. Powers, Lefschetz fixed point theorems for a new class of multi-valued maps, Pacific J. Math. 42 (1972), 211-220. MR 0334189 (48:12508)
  • [20] S. Reich, Approximate selections, best approximations, fixed points, and invariant sets, J. Math. Anal. Appl. 62 (1978), 104-113. MR 0514991 (58:24180)
  • [21] -, Fixed point theorems for set-valued mappings, J. Math. Anal. Appl. 69 (1978), 353-358. MR 538223 (80k:47068)
  • [22] I. Singer, Some remarks on approximative compactness, Rev. Roumaine Math. Pures Appl. 9 (1964), 167-177. MR 0178450 (31:2707)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H10, 47H19, 54C60, 54H25

Retrieve articles in all journals with MSC: 47H10, 47H19, 54C60, 54H25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1189547-8
Keywords: Acyclic map, approximatively compact, Kakutani factorizable multifunction, coincidence point
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society