On the Szegő kernel of an annulus
Authors:
Scott McCullough and LiChien Shen
Journal:
Proc. Amer. Math. Soc. 121 (1994), 11111121
MSC:
Primary 30C40; Secondary 46E22
MathSciNet review:
1189748
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we introduce a class of reproducing kernels of an annulus. Using the properties of the theta functions, we obtain a set of functional equations involving these kernels. We discuss some extremal problems associated with the functional equations.
 [1]
M.
B. Abrahamse, The Pick interpolation theorem for finitely connected
domains, Michigan Math. J. 26 (1979), no. 2,
195–203. MR
532320 (80j:30052)
 [2]
M.
B. Abrahamse and R.
G. Douglas, A class of subnormal operators related to
multiplyconnected domains, Advances in Math. 19
(1976), no. 1, 106–148. MR 0397468
(53 #1327)
 [3]
Jim
Agler, Rational dilation on an annulus, Ann. of Math. (2)
121 (1985), no. 3, 537–563. MR 794373
(87a:47007), http://dx.doi.org/10.2307/1971209
 [4]
Joseph
A. Ball and Kevin
F. Clancey, Reproducing kernels for Hardy spaces on multiply
connected domains, Integral Equations Operator Theory
25 (1996), no. 1, 35–57. MR 1386327
(97f:46042), http://dx.doi.org/10.1007/BF01192041
 [5]
Stefan
Bergman, The Kernel Function and Conformal Mapping,
Mathematical Surveys, No. 5, American Mathematical Society, New York, N.
Y., 1950. MR
0038439 (12,402a)
 [6]
John
D. Fay, Theta functions on Riemann surfaces, Lecture Notes in
Mathematics, Vol. 352, SpringerVerlag, Berlin, 1973. MR 0335789
(49 #569)
 [7]
Gadadhar
Misra, Curvature inequalities and extremal properties of bundle
shifts, J. Operator Theory 11 (1984), no. 2,
305–317. MR
749164 (86h:47057)
 [8]
Zeev
Nehari, Conformal mapping, Dover Publications Inc., New York,
1975. Reprinting of the 1952 edition. MR 0377031
(51 #13206)
 [9]
Vern
I. Paulsen, Completely bounded maps and dilations, Pitman
Research Notes in Mathematics Series, vol. 146, Longman Scientific
& Technical, Harlow, 1986. MR 868472
(88h:46111)
 [10]
Donald
Sarason, The 𝐻^{𝑝} spaces of an annulus, Mem.
Amer. Math. Soc. No. 56 (1965), 78. MR 0188824
(32 #6256)
 [11]
E.
T. Whittaker and G.
N. Watson, A course of modern analysis, Cambridge Mathematical
Library, Cambridge University Press, Cambridge, 1996. An introduction to
the general theory of infinite processes and of analytic functions; with an
account of the principal transcendental functions; Reprint of the fourth
(1927) edition. MR 1424469
(97k:01072)
 [1]
 M. B. Abrahamse, The Pick interpolation theorem for finitely connected domains, Michigan Math. J. 26 (1979), 195203. MR 532320 (80j:30052)
 [2]
 M. B. Abrahamse and R. G. Douglas, A class of subnormal operators related to a multiply connected domain, Adv. Math. 121 (1976), 106108. MR 0397468 (53:1327)
 [3]
 J. Agler, Rational dilation on an annulus, Ann. of Math. (2) 121 (1985), 537564. MR 794373 (87a:47007)
 [4]
 J. A. Ball and K. F. Clancey, Reproducing kernels for Hardy spaces on multiply connected domains, preprint. MR 1386327 (97f:46042)
 [5]
 S. Bergman, The kernel function and conformal mapping, Amer. Math. Soc. Survey 5 (1950). MR 0038439 (12:402a)
 [6]
 John D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Math., vol. 352, Springer, New York, 1973, p. 352. MR 0335789 (49:569)
 [7]
 G. Misra, Curvative inequalities and extremal properties of bundle shifts, J. Operator Theory 11 (1984), 305318. MR 749164 (86h:47057)
 [8]
 Z. Nehari, Conformal mapping, Dover, New York, 1985. MR 0377031 (51:13206)
 [9]
 V. I. Paulsen, Completely bounded maps and dilations, Pitman Press, New York, 1986. MR 868472 (88h:46111)
 [10]
 D. Sarason, The spaces of an annulus, Mem. Amer. Math. Soc., vol. 56, Amer. Math. Soc., Providence, RI, 1975. MR 0188824 (32:6256)
 [11]
 E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed., Cambridge Univ. Press, New York, 1958. MR 1424469 (97k:01072)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
30C40,
46E22
Retrieve articles in all journals
with MSC:
30C40,
46E22
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199411897489
PII:
S 00029939(1994)11897489
Article copyright:
© Copyright 1994 American Mathematical Society
