On the Szegő kernel of an annulus

Authors:
Scott McCullough and Li-Chien Shen

Journal:
Proc. Amer. Math. Soc. **121** (1994), 1111-1121

MSC:
Primary 30C40; Secondary 46E22

DOI:
https://doi.org/10.1090/S0002-9939-1994-1189748-9

MathSciNet review:
1189748

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we introduce a class of reproducing kernels of an annulus. Using the properties of the theta functions, we obtain a set of functional equations involving these kernels. We discuss some extremal problems associated with the functional equations.

**[1]**M. B. Abrahamse,*The Pick interpolation theorem for finitely connected domains*, Michigan Math. J.**26**(1979), no. 2, 195–203. MR**532320****[2]**M. B. Abrahamse and R. G. Douglas,*A class of subnormal operators related to multiply-connected domains*, Advances in Math.**19**(1976), no. 1, 106–148. MR**0397468**, https://doi.org/10.1016/0001-8708(76)90023-2**[3]**Jim Agler,*Rational dilation on an annulus*, Ann. of Math. (2)**121**(1985), no. 3, 537–563. MR**794373**, https://doi.org/10.2307/1971209**[4]**Joseph A. Ball and Kevin F. Clancey,*Reproducing kernels for Hardy spaces on multiply connected domains*, Integral Equations Operator Theory**25**(1996), no. 1, 35–57. MR**1386327**, https://doi.org/10.1007/BF01192041**[5]**Stefan Bergman,*The Kernel Function and Conformal Mapping*, Mathematical Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950. MR**0038439****[6]**John D. Fay,*Theta functions on Riemann surfaces*, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag, Berlin-New York, 1973. MR**0335789****[7]**Gadadhar Misra,*Curvature inequalities and extremal properties of bundle shifts*, J. Operator Theory**11**(1984), no. 2, 305–317. MR**749164****[8]**Zeev Nehari,*Conformal mapping*, Dover Publications, Inc., New York, 1975. Reprinting of the 1952 edition. MR**0377031****[9]**Vern I. Paulsen,*Completely bounded maps and dilations*, Pitman Research Notes in Mathematics Series, vol. 146, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986. MR**868472****[10]**Donald Sarason,*The 𝐻^{𝑝} spaces of an annulus*, Mem. Amer. Math. Soc. No.**56**(1965), 78. MR**0188824****[11]**E. T. Whittaker and G. N. Watson,*A course of modern analysis*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR**1424469**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30C40,
46E22

Retrieve articles in all journals with MSC: 30C40, 46E22

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1189748-9

Article copyright:
© Copyright 1994
American Mathematical Society