Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Howe/Kirillov theory for $ p$-adic symmetric spaces

Author: Jeffrey Hakim
Journal: Proc. Amer. Math. Soc. 121 (1994), 1299-1305
MSC: Primary 22E50; Secondary 22E35
MathSciNet review: 1195479
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The method of coadjoint orbits is adapted to sufficiently small compact subgroups of a pair $ (G,{G_ + })$, where G is a p-adic group and $ {G_ + }$ is the subgroup of fixed points of an involution. The techniques developed here have been used to prove local integrability of certain distributions which are fundamental in the harmonic analysis of $ G/{G_ + }$.

References [Enhancements On Off] (What's this?)

  • [1] B. Gross, Some applications of Gelfand pairs to number theory, Bull. Amer. Math. Soc. (N.S.) 24 (1991), 277-301. MR 1074028 (91i:11055)
  • [2] J. Hakim, Admissible distributions on p-adic symmetric spaces, preprint. MR 1293871 (96m:22019)
  • [3] -, Character relations for distinguished representations, Amer. J. Math. (to appear). MR 1296727 (95i:22026)
  • [4] Harish-Chandra, Admissible invariant distributions on reductive p-adic groups, Queen's Papers in Pure and Appl. Math., vol. 48, Queen's Univ., Kingston, ON, 1978, pp. 281-347. MR 0579175 (58:28313)
  • [5] R. Howe, Kirillov theory for compact p-adic groups, Pacific J. Math. 73 (1977), 365-381. MR 0579176 (58:28314)
  • [6] H. Jacquet and K. F. Lai, A relative trace formula, Compositio. Math. 54 (1985), 243-310. MR 783512 (86j:11059)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E50, 22E35

Retrieve articles in all journals with MSC: 22E50, 22E35

Additional Information

Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society