Howe/Kirillov theory for -adic symmetric spaces

Author:
Jeffrey Hakim

Journal:
Proc. Amer. Math. Soc. **121** (1994), 1299-1305

MSC:
Primary 22E50; Secondary 22E35

MathSciNet review:
1195479

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The method of coadjoint orbits is adapted to sufficiently small compact subgroups of a pair , where *G* is a *p*-adic group and is the subgroup of fixed points of an involution. The techniques developed here have been used to prove local integrability of certain distributions which are fundamental in the harmonic analysis of .

**[1]**Benedict H. Gross,*Some applications of Gel′fand pairs to number theory*, Bull. Amer. Math. Soc. (N.S.)**24**(1991), no. 2, 277–301. MR**1074028**, 10.1090/S0273-0979-1991-16017-9**[2]**Jeffrey Hakim,*Admissible distributions on 𝑝-adic symmetric spaces*, J. Reine Angew. Math.**455**(1994), 1–19. MR**1293871**, 10.1515/crll.1994.455.1**[3]**Jeffrey Hakim,*Character relations for distinguished representations*, Amer. J. Math.**116**(1994), no. 5, 1153–1202. MR**1296727**, 10.2307/2374943**[4]**Harish-Chandra,*Admissible invariant distributions on reductive 𝑝-adic groups*, Lie theories and their applications (Proc. Ann. Sem. Canad. Math. Congr., Queen’s Univ., Kingston, Ont., 1977) Queen’s Univ., Kingston, Ont., 1978, pp. 281–347. Queen’s Papers in Pure Appl. Math., No. 48. MR**0579175****[5]**Roger E. Howe,*Kirillov theory for compact 𝑝-adic groups*, Pacific J. Math.**73**(1977), no. 2, 365–381. MR**0579176****[6]**H. Jacquet and K. F. Lai,*A relative trace formula*, Compositio Math.**54**(1985), no. 2, 243–310. MR**783512**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
22E50,
22E35

Retrieve articles in all journals with MSC: 22E50, 22E35

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1994-1195479-1

Article copyright:
© Copyright 1994
American Mathematical Society