Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Positive definite operator sequences


Author: T. Bisgaard
Journal: Proc. Amer. Math. Soc. 121 (1994), 1185-1191
MSC: Primary 43A35; Secondary 43A65, 44A60, 46L05
DOI: https://doi.org/10.1090/S0002-9939-1994-1197531-3
MathSciNet review: 1197531
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An example is given of a linear mapping from $ {\mathbf{C}}[x]$ to $ {{\mathbf{M}}_2}({\mathbf{C}})$ which is positive but not completely positive. It is shown that a positive linear mapping from $ {\mathbf{C}}[x]$ to $ {\mathbf{B}}(\mathcal{H})$ is completely positive if certain scalar moment sequences associated with it are determinate.


References [Enhancements On Off] (What's this?)

  • [1] N. I. Akhiezer, The classical moment problem, Oliver & Boyd, Edinburgh, 1965.
  • [2] W. B. Arveson, Subalgebras of $ {C^ \ast }$-algebras, Acta Math. 123 (1969), 141-224. MR 0253059 (40:6274)
  • [3] C. Berg and J. P. R. Christensen, Density questions in the classical theory of moments, Ann. Inst. Fourier (Grenoble) 31 (1981), 99-114. MR 638619 (84i:44006)
  • [4] C. Berg, J. P. R. Christensen, and P. Ressel, Harmonic analysis on semigroups, Springer-Verlag, New York, Berlin, Heidelberg, and Tokyo, 1984. MR 747302 (86b:43001)
  • [5] D. E. Evans, Quantum dynamical semigroups, symmetry groups and locality, Acta Appl. Math. 2 (1984), 333-352. MR 753699 (85i:46091)
  • [6] D. E. Evans and J. T. Lewis, Dilations of irreversible evolutions in algebraic quantum theory. Comm. Dublin Inst. Adv. Stud. Ser. A, vol. 24, Inst. Adv. Stud., Dublin, 1977. MR 0489494 (58:8915)
  • [7] J. S. MacNerney, Hermitean moment sequences, Trans. Amer. Math. Soc. 103 (1962), 45-81. MR 0150550 (27:546)
  • [8] W. Mlak, Dilations of Hilbert space operators (general theory), Dissertationes Math. (Rozprawy Mat.) 153 (1978), 1-61. MR 496046 (81j:47008)
  • [9] K. Schmüdgen, On a generalization of the classical moment problem, J. Math. Anal. Appl. 125 (1987), 461-470. MR 896176 (88k:44012)
  • [10] J. A. Shohat and J. D. Tamarkin, The problem of moments, Amer. Math. Soc., Providence, RI, 1943. MR 0008438 (5:5c)
  • [11] W. F. Stinespring, Positive functions on $ {C^\ast}$-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216. MR 0069403 (16:1033b)
  • [12] B. Sz.-Nagy, A moment problem for self-adjoint operators, Acta. Sci. Math. (Szeged) 3 (1952), 285-292. MR 0055583 (14:1096c)
  • [13] -, Extension of linear transformations in Hilbert space which extend beyond this space, Ungar, New York, 1960.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A35, 43A65, 44A60, 46L05

Retrieve articles in all journals with MSC: 43A35, 43A65, 44A60, 46L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1197531-3
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society