Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Kähler-Einstein surfaces with nonpositive bisectional curvature

Author: Fangyang Zheng
Journal: Proc. Amer. Math. Soc. 121 (1994), 1217-1220
MSC: Primary 53C55; Secondary 32J27, 53C25
MathSciNet review: 1200182
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we show that, for a Kähler-Einstein surface M with negative Ricci curvature and nonpositive bisectional curvature, if the cotangent bundle of M is not quasi-ample then M is a quotient of the bidisc.

References [Enhancements On Off] (What's this?)

  • [P] A. Polombo, Condition d'Einstein et courbure négative en dimension 4, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 667-670. MR 967809 (89m:53078)
  • [S] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. (2) 85 (1967), 246-266. MR 0206881 (34:6697)
  • [SY] Y.-T. Siu and P. Yang, Compact Kähler-Einstein surfaces of nonpositive bisectional curvature, Invent. Math. 64 (1981), 471-487. MR 632986 (83e:53047)
  • [YZ] S.-T. Yau and F. Zheng, On a borderline class of non-positively curved Kähler manifolds, preprint, 1991.
  • [Z] F. Zheng, On compact Kähler surfaces with non-positive bisectional curvature, preprint, 1992. MR 1310732 (95k:32027)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C55, 32J27, 53C25

Retrieve articles in all journals with MSC: 53C55, 32J27, 53C25

Additional Information

Keywords: Kähler-Einstein, bisectional curvature, quasi-ample
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society