Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Kähler-Einstein surfaces with nonpositive bisectional curvature


Author: Fangyang Zheng
Journal: Proc. Amer. Math. Soc. 121 (1994), 1217-1220
MSC: Primary 53C55; Secondary 32J27, 53C25
MathSciNet review: 1200182
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we show that, for a Kähler-Einstein surface M with negative Ricci curvature and nonpositive bisectional curvature, if the cotangent bundle of M is not quasi-ample then M is a quotient of the bidisc.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C55, 32J27, 53C25

Retrieve articles in all journals with MSC: 53C55, 32J27, 53C25


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1994-1200182-5
PII: S 0002-9939(1994)1200182-5
Keywords: Kähler-Einstein, bisectional curvature, quasi-ample
Article copyright: © Copyright 1994 American Mathematical Society