GROWTH PROPERTY FOR THE MINIMAL SURFACE EQUATION IN UNBOUNDED DOMAINS

JENN-FANG HWANG

Abstract. Here we prove that if \(u \) satisfies the minimal surface equation in an unbounded domain \(\Omega \) which is properly contained in a half plane, then the growth rate of \(u \) is of the same order as the shape of \(\Omega \) and \(u|_{\partial \Omega} \).

1. Introduction

The purpose of this paper is to improve a Phragmén-Lindelöf Theorem for the minimal surface equation in \(\mathbb{R}^2 \). Hwang has proved that if \(u \) satisfies the minimal surface equation in an unbounded domain \(\Omega \), which is properly contained in a half plane, the growth property of \(u \) depends on \(\Omega \) and \(u|_{\partial \Omega} \) only, without requiring any restriction for \(u \) [3]. In this respect, the Phragmén-Lindelöf Theorem for the minimal surface equation is better than that of the Laplace equation. We remark that if \(u \) satisfies the Laplace equation in an unbounded domain \(\Omega \), the growth property of \(u \) cannot be determined completely by the shape of \(\Omega \) and \(u|_{\partial \Omega} \) alone [7].

But the estimate in [3] is not good enough. For example, let \(\Omega = \{ - \cosh y < x < \cosh y | y > 0 \} \) and \(\text{div} \, Tu = 0 \) in \(\Omega \), \(u|_{\partial \Omega} = \sqrt{(\cosh y)^2 - x^2}|_{\partial \Omega} \). Then, by Example 3.4 of [3], we know that \(u = O(y e^y) \) as \(y \to \infty \), but the growth rate of the solution \(\sqrt{(\cosh y)^2 - x^2} \) (catenoid) is \(O(e^y) \).

The purpose of this paper is to improve the estimate of [3]. We will prove that the growth rate of \(u \) is of the same order as the shape of \(\Omega \) and \(u|_{\partial \Omega} \) (Theorems 2.12 and 2.13). In fact, let \(\Omega = \{ - \cosh y < x < \cosh y \} \). We will prove that a catenoid is the maximum solution among the solutions with vanishing boundary value (Corollary 2.3).

2. Phragmén-Lindelöf Theorems for \(\mathbb{R}^2 \)

Throughout the paper, \(\Omega \) will be a connected domain (bounded or unbounded) in \(\mathbb{R}^2 \) and, for any function \(u \in C^2(\Omega) \), \(Tu \) will denote the vector \(Du/\sqrt{1 + |Du|^2} \), where \(Du \) is the gradient vector of \(u \) and the minimal surface
operator \mathcal{M} is given by

$$\mathcal{M}u = (1 + |Du|^2)\Delta u - D_i u D_j u D_i D_j u = (1 + |Du|^2)^{3/2} \operatorname{div} Tu,$$

where Δu is the Laplacian of u.

We will use functions of the form

$$F(x, y) = (G(x, y))^{1/2} g(y) + h(y)$$

as comparison functions, and we compute $\mathcal{M} F$ in the following lemma.

Lemma 2.1. Let

$$F(x, y) = (G(x, y))^{1/2} g(y) + h(y),$$

where $F, G : \mathbb{R}^2 \to \mathbb{R}^1$, $g, h : \mathbb{R}^1 \to \mathbb{R}^1$, $F, G, g, h \in C^2$, and $G > 0$. Then $G^{3/2} \mathcal{M} F = I + II + III$, where

$$I = g^3 \left(\frac{1}{4} G_x^2 \left(\frac{1}{2} G_{yy} + G \frac{g''}{g} - 3G \left(\frac{g'}{g} \right)^2 \right)
+ \frac{1}{2} G_{xx} \left(\frac{1}{4} G_y^2 + G_y \frac{g'}{g} + G^2 \left(\frac{g'}{g} \right)^2 \right) - \frac{1}{2} G_x G_{xy} \left(\frac{1}{2} G_y + G \frac{g'}{g} \right) \right),$$

$$II = g \left(-\frac{1}{4} G_y^2 + \frac{1}{2} G G_{yy} + G G_y \frac{g'}{g} + G^2 \frac{g''}{g} - \frac{1}{4} G_x^2 + \frac{1}{2} G_{xx} G \right),$$

$$III = G^{1/2} h'' \left(G + \frac{1}{4} G_x^2 g^2 \right)
+ G^{1/2} h' \left(-\frac{1}{2} G_x G_{xy} g^2 - G_x^2 g g' + \frac{1}{2} G_y G_{xx} g^2 + G G_{xx} g g' \right)
+ h' \left(-\frac{1}{4} G_x^2 g + \frac{1}{2} G G_{xx} g \right).$$

Proof. By simple computation we have

$$\left(1 + F_x^2\right) F_{yy} = \left(1 + \frac{1}{4} G^{-1} G_x^2 g^2 \right) \times \left(-\frac{1}{4} G^{-3/2} G_y g + \frac{1}{2} G^{-1/2} G_{yy} g + G^{-1/2} G_y g' + G^{1/2} g'' + h' \right),$$

$$-2 F_x F_y F_{xy} = -2 \left(\frac{1}{2} G^{-1/2} G_x g \right) \left(\frac{1}{2} G^{-1/2} G_y g + G^{1/2} g' + h' \right) \times \left(-\frac{1}{4} G^{-3/2} G_x G_y g + \frac{1}{2} G^{-1/2} G_{xy} g + \frac{1}{2} G^{-1/2} G_x g' \right),$$

$$(1 + F_y^2) F_{xx} = \left(1 + \left(\frac{1}{2} G^{-1/2} G_y g + G^{1/2} g' + h' \right)^2 \right) \times \left(-\frac{1}{4} G^{-3/2} G_x^2 g + \frac{1}{2} G^{-1/2} G_{xx} g \right).$$
Hence
\[
G^{5/2}MF = (G + \frac{1}{4}G_x^2g^2)(-\frac{1}{4}G_y^2g + \frac{1}{2}GG_yy_g + GG_yg' + G^2g'' + G^{3/2}h'') \\
- 2(\frac{1}{2}G_x g)(\frac{1}{2}G_y g + Gg')(-\frac{1}{4}G_x G_y g + \frac{1}{2}GG_{xy} g + \frac{1}{2}GG_x g') \\
+ (G + (\frac{1}{2}G_y g + Gg' + h'G^{1/2})^2)(-\frac{1}{4}G_x^2 g + \frac{1}{2}GG_{xx} g) \\
= \frac{1}{4}G_x^2 g^2(-\frac{1}{4}G_y^2 g + \frac{1}{2}GG_{yy} g + GG_yg' + G^2g'' \\
- 2(\frac{1}{2}G_x g)(\frac{1}{2}G_y g + Gg')(-\frac{1}{4}G_x G_y g + \frac{1}{2}GG_{xy} g + \frac{1}{2}GG_x g') \\
+ (\frac{1}{2}G_y g + Gg')^2(-\frac{1}{4}G_x^2 g + \frac{1}{2}GG_{xx} g) \\
+ G(-\frac{1}{4}G_y^2 g + \frac{1}{2}GG_{yy} g + GG_yg' + G^2g'' - \frac{1}{4}G_x^2 g + \frac{1}{2}GG_{xx} g)G \\
+ G^{3/2}h''(G + \frac{1}{4}G_x^2 g^2) \\
+ G^{1/2}h'(-G_x g)(-\frac{1}{4}G_x G_y g + \frac{1}{2}GG_{xy} g + \frac{1}{2}GG_x g') \\
+ 2h'G^{1/2}(\frac{1}{2}G_y g + Gg')(-\frac{1}{4}G_x^2 g + \frac{1}{2}GG_{xx} g) \\
+ \frac{1}{2}G(-\frac{1}{4}G_y^2 g + \frac{1}{2}GG_{xx} g) \\
= \frac{3}{4}G_x^2 g(\frac{1}{2}GG_{yy} g + G^2g'' - 3G^2(\frac{4}{g})^2) \\
+ \frac{1}{2}GG_{xx}(\frac{1}{2}G_y + Gg') - \frac{1}{2}GG_{xy}(\frac{1}{2}G_y + Gg') \\
+ G^2(-\frac{1}{4}G_x^2 g + \frac{1}{2}GG_{yy} g + GG_yg' + G^2g'' - \frac{1}{4}G_x^2 g + \frac{1}{2}GG_x G) \\
+ G(G^{1/2}h''(G + \frac{1}{4}G_x^2 g^2) \\
+ G^{1/2}h'(-\frac{1}{2}G_x G_{xy} g^2 - G^2g g' + \frac{1}{2}Gx G_{xx} g^2 + GG_{xx} g g')) \\
+ h^2(-\frac{1}{4}G_x^2 g + \frac{1}{2}GG_{xx} g) \\
= G(I + II + III).
\]

The lemma follows.

Now we treat the Phragmèn-Lindelöf Theorem for comparison functions $H(x, y)$ with faster growth. Since, in a half plane, the bound of the solutions with vanishing boundary value does not even exist, the domain must be properly contained in a half plane.

Lemma 2.2. Let $H(x, y) = a \sqrt{f^2(y)} - x^2$ and $\Omega \subset \{ -f_1(y) < x < f_1(y), y > 0 \}$, where $f, f_1 : [0, \infty) \to [0, \infty)$, $f \in C^2$, $f_1 \in C^0$, $f \geq f_1 > 0$ for $y > 0$, $f' \equiv \frac{df}{dy} > 0$, and a is a positive constant. Let $u \in C^2(\Omega) \cap C^0(\Omega)$, and suppose that

(i) $\text{div} \, TH - \text{div} \, Tu \leq 0$ in Ω,

(ii) $(u - H)_{|\partial \Omega} \leq 0$,

(iii) $\liminf_{y \to \infty} f_1(y) / f'^2 = 0$.

Then $u \leq H$ in Ω.

Remark. It is easy to see that if $\lim_{y \to \infty} f(y)/f'^2 = 0$, then the rate of growth of f must be faster than y^2 as $y \to \infty$.

Proof of Lemma 2.2. If $\{ (x, y) \in \Omega | u(x, y) - H(x, y) > 0 \}$ is nonempty, there exists $\varepsilon > 0$ such that $\Omega' = \{ (x, y) \in \Omega | u(x, y) - H(x, y) > \varepsilon \}$ is non-empty and $\partial \Omega' \cap \Omega$ is smooth (Sard's Theorem). Since $(u - H)_{|\partial \Omega} \leq 0$, we have $\partial \Omega' \subset \Omega$ and $\partial \Omega' = \{ (x, y) \in \Omega | u - H = \varepsilon \}$.
For every $y_0 > 0$, let $\Omega_{y_0} = \Omega' \cap \{ y < y_0 \}$ and $\Gamma_{y_0} = \partial \Omega_{y_0} \cap \{ y = y_0 \}$. By the divergence theorem, we have

$$\int_{\partial \Omega_{y_0}} \tan^{-1}(u - H - \varepsilon)(Tu - TH) \cdot \nu d\sigma$$

$$= \int \int_{\Omega_{y_0}} \frac{(Du - DH)}{1 + (u - H - \varepsilon)^2} (Tu - TH) dx$$

$$+ \int \int_{\Omega_{y_0}} (u - H - \varepsilon)(\text{div } Tu - \text{div } TH) dx,$$

where ν is the unit outer normal of $\partial \Omega_{y_0}$. Noticing that $\partial \Omega_{y_0} \setminus \Gamma_{y_0} \subset \partial \Omega'$, we have $u - H = \varepsilon$ on $\partial \Omega_{y_0} \setminus \Gamma_{y_0}$. Since $\tan^{-1}(u - H - \varepsilon)(\text{div } Tu - \text{div } TH) \geq 0$ in Ω_{y_0} and $Tu \cdot \nu \leq 1$,

$$\int \int_{\Omega_{y_0}} \frac{(Du - DH)}{1 + (u - H - \varepsilon)^2} (Tu - TH) dx$$

$$\leq \int_{\Gamma_{y_0}} \tan^{-1}(u - H - \varepsilon)(Tu - TH) \cdot \nu d\sigma$$

$$\leq \int_{\Gamma_{y_0}} \tan^{-1}(u - H - \varepsilon)(1 - TH \cdot \nu) d\sigma.$$

Since $\nu = (0, 1)$ on Γ_{y_0},

$$H = a\sqrt{f^2 - x^2}, \quad H_y = a\frac{f f'}{\sqrt{f^2 - x^2}}, \quad H_x = -\frac{a x}{\sqrt{f^2 - x^2}},$$

$$TH \cdot \nu|_{\Gamma_{y_0}} = \frac{H_y}{\sqrt{1 + H_x^2 + H_y^2}} = \frac{a f f' / \sqrt{f^2 - x^2}}{\sqrt{1 + a^2 x^2 / (f^2 - x^2) + a^2 f^2 f'^2 / (f^2 - x^2)}}$$

$$= \frac{a f f'}{\sqrt{f^2 - x^2 + a^2 x^2 + a^2 f^2 f'^2}},$$

$$(1 - TH \cdot \nu)|_{\Gamma_{y_0}}$$

$$= \frac{\sqrt{f^2 - x^2 + a^2 x^2 + a^2 f^2 f'^2 - a f f'}}{\sqrt{f^2 - x^2 + a^2 x^2 + a^2 f^2 f'^2} \cdot \sqrt{f^2 - x^2 + a^2 x^2 + a^2 f^2 f'^2 + a f f'}}$$

$$= \frac{f^2 - x^2 + a^2 x^2}{\sqrt{f^2 - x^2 + a^2 x^2 + a^2 f^2 f'^2}}$$

$$\leq \frac{(1 + a^2) f^2}{a^2 f^2 f'^2} = \frac{1 + a^2}{a^2 f^2 f'^2}.$$
Now
\[\int_{\Omega_0} \frac{(Du - DH)}{1 + (u - H - \varepsilon)^2} (Tu - TH) \, dx \]
\leq \int_{\Gamma_{\Omega_0}} \tan^{-1}(u - H - \varepsilon)(1 - TH \cdot \nu) \, d\sigma
\leq \frac{\pi}{2} \int_{\Gamma_{\Omega_0}} \frac{1 + a^2}{a^2 f'^2} \, d\sigma \leq \pi \cdot \frac{(1 + a^2)}{a^2 f'^2}(y_0).

Let \(y_0 \to \infty \). We have
\[0 \leq \int_{\Omega} \frac{(Du - DH)}{1 + (u - H - \varepsilon)^2} (Tu - TH) \, dx \leq 0. \]

Since \((Du - DH) \cdot (Tu - TH) \geq 0 \) and the equality holds when \(Du = DH \), we have \(Du - DH \equiv 0 \) in \(\Omega' \). Then \(u \equiv H + \varepsilon \) in \(\Omega' \), and, by definition, \(\Omega' \) must be empty. This is impossible, and we conclude that \(u(x) \leq H(x) \) for all \(x \) in \(\Omega \).

Remark. The following well-known fact is used to prove Lemma 2.2: \(Du/\sqrt{1 + |Du|^2} \) has norm less than 1. It is a very important idea for the capillary surface equation (cf. [1, Theorem 5.1]).

Now we obtain the result: catenoid is the maximum solution among those surfaces on \(\Omega = \{- \cosh y < x < \cosh y\} \) satisfying the minimal surface equation and with vanishing boundary value.

Corollary 2.3. Let \(\Omega = \{- \cosh y < x < \cosh y\} \), and let \(u \in C^2(\Omega) \cap C^0(\Omega) \).

Suppose that
(i) \(\text{div} \, Tu > 0 \) in \(\Omega \),
(ii) \(u|_{\partial \Omega} \leq 0 \).

Then \(u \leq \sqrt{(\cosh y)^2 - x^2} \).

Proof. The corollary can be proved by the fact that
\[\text{div} \, Tu - \text{div} \, T\sqrt{(\cosh y)^2 - x^2} \geq 0, \quad \lim_{y \to \pm \infty} \frac{\cosh y}{[(\cosh y)^2]^2} = 0, \]
and a similar argument as in the proof of Lemma 2.2.
(ii) If \(p_0 < 0 \), \(a > \sqrt{1 - p_0} \), \(a \) is a positive constant, and \(f^2 \geq (a^2 - 1)(2 - p_0)f_1^2/(a^2 - (1 - p_0)) \), we have \(G^{3/2} \mathcal{M} F \leq 0 \) in \(\Omega \).

Proof. (i) If \(2 \geq p(f) \geq p_0 \), it is easy to see that

\[
G^{3/2} \mathcal{M} F \leq 0.
\]

If \(p(f) \geq 2 \), we have

\[
G^{3/2} \mathcal{M} F \leq (p(f) - 2)\sqrt{1 - p_0}p_0 x^2 f^2 + f^2 f_1^2 \sqrt{1 - p_0}(-p(f) + p_0) \leq 0.
\]

(ii) By assumption, it is easy to have the following:

\[
G^{3/2} \mathcal{M} F = f^2 a^3 (-f^2 + (2 - p(f))x^2)
\]

\[
+ f^2 a(f^2(1 - p(f)) - (2 - p(f))x^2) - af^2
\]

\[
= af^2 ((a^2 - 1)(2 - p(f))x^2 - f^2(a^2 - (1 - p(f)))) - af^2 \leq 0.
\]

Hence it is easy to derive the following theorem.

Theorem 2.5. Let \(f, f_1, p(f), \) and \(\Omega \) be defined as in Lemma 2.4. Let \(\liminf_{\gamma \to \infty} (f_1/f^2) = 0, u \in C^2(\Omega) \cap C^0(\Omega), \) and \(\text{div} \, Tu \geq 0 \) in \(\Omega \). Then

(i) If \(p(f) \geq p_0 \geq 0 \) where \(p_0 \) is a constant, \(f \geq f_1, 1 \geq p_0 \geq 0, \) and \(u|_{\partial \Omega} \leq \sqrt{1 - p_0} \sqrt{f^2 - x^2}|_{\partial \Omega} \), then we have \(u \leq \sqrt{1 - p_0} \sqrt{f^2 - x^2} \) in \(\Omega \).

(ii) If \(p(f) \geq p_0 \), where \(p_0 \) is a negative constant, and

\[
f^2 \geq (a^2 - 1)(2 - p_0)f_1^2, \quad u|_{\partial \Omega} \leq a \sqrt{f^2 - x^2}|_{\partial \Omega},
\]

where \(a \) is a positive constant satisfying \(a^2 - 1 + p_0 > 0 \), then we have \(u \leq a \sqrt{f^2 - x^2} \) in \(\Omega \).

We will show later that the above theorem still remains valid without the condition \(\liminf_{\gamma \to \infty} (f_1/f^2) = 0 \). We first investigate the properties of \(p(f) \). Let \(f \in C^2, f \geq 0, f' \geq 0, a \) be a positive constant, and \(\alpha \neq 0 \) be a constant. Since \(p(af^\alpha) = (1/(\log(af^\alpha))')' = \frac{1}{\alpha}(1/(\log f')')' \), we have \(p(af^\alpha) = \frac{1}{\alpha} p(f) \). Then we prove the following lemma.

Lemma 2.6. Let \(f, f_1 \in C^2 \), and \(f, f', f_1, f_1' > 0 \). Then

(i) If \(p(f), p(f_1) \geq p_0 > 0 \), where \(0 < p_0 \leq 1 \), is a constant, then \(p(ff_1) \geq p_0/2 > 0 \);

(ii) If \(p(f) \geq 0 \), then \(p(e^{ay}f) \geq 0 \) for any positive constant \(a \);\n
(iii) If \(p(f) \geq p_0 \), where \(p_0 \) is a negative constant, then \(p(e^{ay}f) \geq p_0 \) for any positive constant \(a \).

Proof. (i) Let \(h = (\log f)' = f'/f > 0 \) and let \(h_1 = (\log f_1)' = f_1'/f_1 > 0 \). Since \(p(f) = (1/h) = -h'/h^2 \geq p_0 > 0 \) and \(p(f_1) = (1/h_1)' = -h_1'/h_1^2 \geq p_0 > 0 \), we have \(p(ff_1) = (1/(h + h_1))' = (h' + h_1')/(h + h_1)^2 \geq (h' + h_1')/(2(h^2 + h_1^2)) \geq p_0/2 \).

(ii) Since \(p(f) = -h'/h^2 \geq 0 \), we have \(p(e^{ay}f) = (1/((\log e^{ay})' + (\log f)'))' = (1/(a + h))' = -h/(a + h)^2 \geq 0 \).

(iii) Since \(p(f) = -h'/h^2 \) and \(p(e^{ay}f) = -h/(a + h)^2 \) have the same sign and \(|p(e^{ay}f)| \leq |p(f)| \), the result follows immediately.
Remark 2.7. (i) If \(f = y^m \), where \(m \) is a positive constant, then \(p(f) = \frac{1}{m} \).

(ii) \(p(e^y) = 0 \).

(iii) If we set \(f = e^{\alpha y} \), where \(\alpha > 1 \) is a constant, then \(p(f) = (1/(y^\alpha))' = (y^{1-\alpha}/\alpha)' = (1-\alpha)\alpha^{-\alpha}/\alpha \). This implies that \(p(f) \to 0^- \) as \(y \to \infty \), so, for sufficiently large \(y \), we have \(p(f) > -\varepsilon \) for some small positive number \(\varepsilon \).

Similarly, if \(f \) increases faster than the exponential function, we can assume \(p(f) \geq -\varepsilon \) for some small positive constant \(\varepsilon \) essentially.

Lemma 2.8. Let \(f \in C^1 \), \(f' > 0 \), and \(\limsup_{y \to \infty} (f(y)/y^2) = +\infty \). Then \(\liminf_{y \to \infty} (f/f^2) = 0 \).

Proof. Suppose not; then there exist positive constants \(y_0 \) and \(C \) such that, for every \(y > y_0 \), we have \(f(y)/f^2(y) \geq C \), so \(f = O(y^2) \). Contradiction arises and the lemma follows.

We are now ready to remove the condition \(\liminf_{y \to \infty} (f/f^2) = 0 \) in Theorem 2.5.

We will start with a theorem.

Theorem 2.9. Let \(f \in C^0[0, \infty) \cap C^2(0, \infty) \), \(f \geq 0 \), \(f' > 0 \), \(\Omega \subset \{(x, y)\mid -f(y) < x < f(y), y > 0\} \), \(u \in C^2(\Omega) \cap C^0(\Omega) \), \(\text{div} \, Tu \geq 0 \), and \(p(f) \geq p_0 > 0 \), where \(p_0 \) is a constant. Then

(i) if \(p_0 = 0 \) and \((u - y/P - x^2)|_{\partial \Omega} < 0 \), we have \(u < \sqrt{h^2 - x^2} \) in \(\Omega \).

(ii) if \(1 \geq p_0 > 0 \) and \((u - \sqrt{1 - q_0\sqrt{h^2 - x^2}})|_{\partial \Omega} < 0 \), where \(q_0 = \min(1/4, p_0/2) \), we have \(u < \sqrt{1 - q_0\sqrt{h^2 - x^2}} \) in \(\Omega \).

Proof. (i) Let \(h = e^{ay}f \), where \(a \) is a positive constant. Then by Lemma 2.6 \(p(h) \geq 0 \). So \(\mathfrak{m}(\sqrt{h^2 - x^2}) \leq 0 \) in \(\Omega \). Since \(f' > 0 \), \(\limsup_{y \to \infty} (f/y^2) = +\infty \). By Lemma 2.8, \(\liminf_{y \to \infty} (h/h^2) = 0 \). Since \(u|_{\partial \Omega} \leq \sqrt{h^2 - x^2}|_{\partial \Omega} \leq \sqrt{h^2 - x^2}|_{\partial \Omega} \), by Theorem 2.5, \(u \leq \sqrt{h^2 - x^2} = \sqrt{(e^{ay}f)^2 - x^2} \) in \(\Omega \). Setting \(a \to 0 \), the result follows.

(ii) Let \(h = (1 + by)^4f \), where \(b \) is a positive constant. Since \(p((1 + by)^4) = \frac{1}{4} \), by Lemma 2.6, \(p(h) \geq \min(1/4, p_0)/2 = q_0 > 0 \). By Lemma 2.4, \(\mathfrak{m}(\sqrt{1 - q_0\sqrt{h^2 - x^2}}) \leq 0 \) in \(\Omega \). Since \(f' > 0 \), \(\limsup_{y \to \infty} (h/y^2) = +\infty \). So \(\liminf_{y \to \infty} (h/h^2) = 0 \). Since

\[
\frac{d}{d \Omega} \leq \sqrt{1 - q_0\sqrt{h^2 - x^2}}|_{\partial \Omega} \leq \sqrt{1 - q_0\sqrt{h^2 - x^2}}|_{\partial \Omega},
\]

by Theorem 2.5, \(u \leq \sqrt{1 - q_0\sqrt{h^2 - x^2}} = \sqrt{1 - q_0\sqrt{(1 + by)^8f^2 - x^2}} \) in \(\Omega \); the result then follows by letting \(b \to 0 \).

Theorem 2.10. Let \(f, \Omega, \) and \(u \) be as in Theorem 2.9. \(\lim_{y \to \infty} f(y) = +\infty \), and \(p(f) \geq p_0 > 0 \), where \(1 \geq p_0 > 0 \) is a constant. Suppose \(u|_{\partial \Omega} \leq \sqrt{1 - p_0\sqrt{f^2 - x^2}} \). Then \(u \leq \sqrt{1 - p_0\sqrt{f^2 - x^2}} \) in \(\Omega \).

Proof. Case 1: \(0 < p_0 < 1 \). Let \(q_0 = \min(1/8, p_0/2) \). Then

\[
\frac{d}{d \Omega} \leq \sqrt{1 - p_0\sqrt{f^2 - x^2}}|_{\partial \Omega} \leq \sqrt{1 - q_0\sqrt{f^2 - x^2}}|_{\partial \Omega},
\]
By Theorem 2.9, \(u \leq \sqrt{1 - q_0 \sqrt{f^2 - x^2}} \) in \(\Omega \). Let
\[
F = \sqrt{f^2 - x^2 - bh(y)^{-\alpha}},
\]
where \(\alpha \) is some constant in \((0, 1)\) to be determined later, \(\varepsilon \) is a constant such that \(0 < \varepsilon < p_0 \) and \(b = p_0 - \varepsilon \), and \(h(y) = f(y_0 + y) \), where \(y_0 \) is a positive constant. Since \(f'' > 0 \) and \(\lim_{y \to \infty} f = +\infty \), we can choose \(y_0 > 0 \) such that \(h \geq 1 \) for every \(y > 0 \). Let
\[
G = f^2 - x^2, \quad g = (1 - bh^{-\alpha})^{1/2},
\]
\[
g' = \frac{1}{2}(1 - bh^{-\alpha})^{-1/2}(-b)(-\alpha)h^{-\alpha-1}h',
\]
\[
g'' = -\frac{1}{4}(1 - bh^{-\alpha})^{-3/2}(-b)(-\alpha)h^{-\alpha-1}h' + b(1 - bh^{-\alpha})^{-1/2}((-\alpha - 1)h^{-\alpha-2}h'^2 + h^{-\alpha-1}h'').
\]
But \(p(h) \geq p_0 > 0 \), so \(h'^2 \geq hh'' \). Hence \(g'' \leq 0 \). By Lemma 2.1,
\[
G^{3/2} \mathcal{M} F = g \left(-f^2 f'' + (f^2 - x^2)(f^2 + f f'') - x^2 - (f^2 - x^2) + (f^2 - x^2)2 f f' \frac{g'}{g} + G^2 \frac{g''}{g} \right)
\]
\[
\leq g(-f^2 f'' + (f^2 - x^2)(f^2 + f f'') - x^2 - (f^2 - x^2) + 2 f f' \frac{g'}{g} (f^2 - x^2))
\]
\[
+ g^3(x^2(f^2 + f f'') - f^2 f'^2)
\]
\[
\leq g + g^3(2 - p(f))x^2 f^2 + f^2 f^2 g((1 - p(f)) - g^2)
\]
\[
- g f^2 + 2 f f' g' (f^2 - x^2)
\]
\[
\leq -g + g^3(2 - p(f))x^2 f^2 - f^2 f^2 g \max(p(f) - 2, 0)
\]
\[
+ f^2 f^2 g((1 - \min(2, p(f)) - g^2) - g f^2 + 2 f f' g' (f^2 - x^2)).
\]
Since \(1 \geq g \geq \sqrt{1 - b} \),
\[
G^{3/2} \mathcal{M} F \leq f^2 f^2 \frac{g}{g^2} \frac{x^2}{g^2} + 2 f f' \frac{g'}{g} f^2
\]
\[
\leq f^2 f^2 g(-\min(2, p(f)) + bh^{-\alpha}) + 2 f^3 f' \frac{1}{2}(1 - bh^{-\alpha})^{-1/2} b\alpha h^{-\alpha-1}h'
\]
\[
\leq f^2 f^2 \sqrt{1 - b}(-\min(2, p(f)) + bh^{-\alpha}) + b\alpha h^{-\alpha-1}h' \frac{1}{\sqrt{1 - b}} f^3 f'
\]
\[
\leq f^2 f^2 \sqrt{1 - b}(-\min(2, p(f)) + b)h^{-\alpha} + b\alpha h^{-\alpha-1}h' \frac{1}{\sqrt{1 - b}} f^3 f'
\]
\[
\leq h^{-\alpha} f^2 f^2 \left(-\sqrt{1 - b} + \alpha bh^{-1}h' \frac{1}{\sqrt{1 - b}} f' \right).
\]
Since \((f/f')' = p(f) > 0\), \(f/f'\) is monotone increasing. But \(h(y) = f(y_0 + y), y_0\) is a positive constant; therefore \(h^\prime f \leq 1\). So when \(0 < \alpha < (1-b)e/b\), we have \(G^{3/2} \mathcal{M} \leq 0\). Since

\[
\lim_{y \to \infty} f(y) = +\infty, \quad \lim_{y \to \infty} \sqrt{1 - bh(y)^{-\alpha}} \to 1,
\]

we have \(F(x, y) \geq \sqrt{1 - q_0 \sqrt{f^2 - x^2}}\) for sufficiently large \(y\). Since \(u \leq \sqrt{1 - q_0 \sqrt{f^2 - x^2}}\) in \(\Omega\) and \(u|_{\partial \Omega} \leq F|_{\partial \Omega}\) by hypothesis, we have \(u \leq F\) in \(\Omega\). So \(u \leq \sqrt{1 - bh^{-\alpha} \sqrt{f^2 - x^2}}\) in \(\Omega\). Letting \(\alpha \to 0\), \(u \leq \sqrt{1 - b \sqrt{f^2 - x^2} = \sqrt{1 - (p_0 - e) \sqrt{f^2 - x^2}}\) in \(\Omega\). Letting \(e \to 0\), we get \(u \leq \sqrt{1 - p_0 \sqrt{f^2 - x^2}}\) in \(\Omega\).

Case 2: \(p_0 = 1\). Then for any constant \(p_1, 0 < p_1 < 1\), we have \(p(f) \geq 1 \geq p_1\). Since \(u|_{\partial \Omega} \leq \sqrt{1 - 1 \sqrt{f^2 - x^2} \leq \sqrt{1 - p_1 \sqrt{f^2 - x^2}}\), by Case 1, we have \(u \leq \sqrt{1 - p_1 \sqrt{f^2 - x^2}}\) in \(\Omega\). Letting \(p_1 \to 1\), the result follows.

Since the case \(\lim f < +\infty\) is not very important, we omit that case.

The case for a negative constant \(p_0\) is studied in the following theorem.

Theorem 2.11. Let \(f \in C^0[0, \infty) \cap C^2(0, \infty), f \geq 0, f'' > 0, f_1 \in C^0[0, \infty), f_1 > 0, \Omega \subset \{(x, y)| - f_1(y) < x < f_1(y), y > 0\}, u \in C^2(\Omega) \cap C^0(\Omega), \text{div} \nabla u \geq 0\) in \(\Omega,\) and \(p(f) \geq p_0,\) where \(p_0\) is a negative constant. Then if \(f^2 \geq (a^2 - 1)(2 - p_0)f_1/(a^2 - (1 - p_0))\) and \(u|_{\partial \Omega} \leq a \sqrt{f^2 - x^2}|_{\partial \Omega},\) where \(a\) is a positive constant satisfying \(a^2 - 1 + p_0 > 0,\) we have \(u \leq a \sqrt{f^2 - x^2}\) in \(\Omega.\)

Proof. Let \(f_2 = e^{a y} f,\) where \(a\) is a positive constant. Then \(f_2^2 \geq f^2 \geq (a^2 - 1)(2 - p_0)f_1/(a^2 - (1 - p_0)).\) By Lemma 2.6, \(p(f_2) \geq p_0.\) It is easy to see that \(\limsup_{y \to \infty} (f_2/y)^2 = +\infty,\) by Lemma 2.8, and \(\liminf_{y \to \infty} (f_2/y)^2 = 0.\)

Since \(u|_{\partial \Omega} \leq a \sqrt{f^2 - x^2}|_{\partial \Omega} \leq a \sqrt{f_1^2 - x^2}|_{\partial \Omega},\) by Theorem 2.5, \(u \leq a \sqrt{f^2 - x^2}\) = \(a \sqrt{e^{a y} f^2 - x^2}\) in \(\Omega.\) The result then follows by letting \(a \to 0.\)

Let \(\Omega \subset \{(x, y)| - f_1(y) < x < f_1(y), y > 0\}\) and \(u|_{\partial \Omega} \leq a f_1,\) where \(a\) is a positive constant. The growing rate of \(u\) is stated in the following theorem.

Theorem 2.12. Let \(f_1 \in C^0[0, \infty) \cap C^2(0, \infty), f_1, f_1^\prime > 0, \lim_{y \to \infty} f_1 = \infty,\) and \(p(f_1) \geq p_0 \geq 0,\) where \(1 \geq p_0 \geq 0\) is a constant. Moreover, let \(\Omega \subset \{(x, y)| - f_1(y) < x < f_1(y), y > 0\}\) and \(f = a f_1,\) where \(a \geq 0\) is a constant. Then if \(\text{div} \nabla u \geq 0\) in \(\Omega\) and \(u|_{\partial \Omega} \leq f,\) we have \(u \leq \sqrt{(a^2 + 1 - p_0)f_1^2 + (1 - p_0)x^2}\) in \(\Omega.\)

Proof. Case 1: \(1 > p_0 \geq 0.\) Since

\[
u|_{\partial \Omega} \leq f = a f_1 \leq \sqrt{1 - p_0} \sqrt{\frac{a^2 f_1^2}{1 - p_0} + f_1^2 - x^2}|_{\partial \Omega}
\]

and \(p(\sqrt{\frac{a^2}{1 - p_0} + f_1}) = p(f) \geq p_0,\)

\[
u \leq \sqrt{1 - p_0} \sqrt{\frac{a^2}{1 - p_0} f_1^2 + f_1^2 - x^2} = \sqrt{(a^2 + (1 - p_0))f_1^2 - (1 - p_0)x^2}\] in \(\Omega\)

by Theorem 2.10.
Case 2: \(p_0 = 1 \). For every constant \(b \) where \(1 \geq b \geq 0 \), by Case 1, we have \(u \leq \sqrt{(a^2 + (1 - b))f_i^2 - (1 - b)x_i^2} \) in \(\Omega \). The result then follows by letting \(b \to 0 \).

Now we assume that \(p(f_i) \geq p_0 \) with \(p_0 \) being a negative constant, and set \(f^2 = (a^2 - 1)(2 - p_0)/f_i^2 / (a^2 - (1 - p_0)) \), where \(a > \sqrt{1 - p_0} \) is a constant. If \(u|_{\partial \Omega} \leq a \sqrt{f^2 - x_i^2}|_{\partial \Omega} \leq a \sqrt{(a^2 - 1)(2 - p_0)/(a^2 - (1 - p_0)) - 1} \), by Theorem 2.11, we have \(u \leq a \sqrt{f^2 - x_i^2} \) in \(\Omega \). Now we want to compute the minimum of \(a \sqrt{(a^2 - 1)(2 - p_0)/(a^2 - (1 - p_0)) - 1} \). For convenience, let \(b = a^2 \) and \(q_1 = 1 - p_0 \), and we need to compute the minimum of

\[
\frac{(b - 1)(1 + q_1) - 1}{b - q_1}.
\]

Take logarithms and differentiate the above function; we have \(1/b + q_1/(q_1 b - 1) = 1/(b - q_1) \). From this, we get \(b = q_1 \pm \sqrt{q_1^2 - 1} \). Since \(b = a^2 > q_1 \), we have \(b = q_1 + \sqrt{q_1^2 - 1} \). So the minimum of \(b(q_1 b - 1)/(b - q_1) \) is

\[
(q_1 + \sqrt{q_1^2 - 1}) \left(\frac{q_1^2 + q_1 \sqrt{q_1^2 - 1} - 1}{\sqrt{q_1^2 - 1}} \right) = (q_1 + \sqrt{q_1^2 - 1})^2,
\]

and the minimum of \(a \sqrt{(a^2 - 1)(2 - p_0)/(a^2 - (1 - p_0)) - 1} \) is \(q_1 + \sqrt{q_1^2 - 1} \).

Theorem 2.13. Assume that \(f_i, f_i' > 0, p(f_i) \geq p_0 \), where \(p_0 \) is a negative constant, \(\Omega \subset \{ -f_i(y) < x < f_i(y)|y > 0 \} \), and \(u \in C^2(\Omega) \cap C^0(\Omega) \). If \(\text{div} \, Tu \geq 0 \) in \(\Omega \), \(q_1 = 1 - p_0 \geq 1 \), and \(u|_{\partial \Omega} \leq b f_i \), where \(b \geq q_1 + \sqrt{q_1^2 - 1} \) is a positive constant, then \(u \leq \sqrt{b} \sqrt{(b + 1)f^2 - x_i^2} \) in \(\Omega \).

Proof. By the assumption that \(b \geq q_1 + \sqrt{q_1^2 - 1} \), we have

\[
(b - (q_1 + \sqrt{q_1^2 - 1}))(b - (q_1 - \sqrt{q_1^2 - 1})) \geq 0,
\]

\[b^2 - 2q_1 b + 1 \geq 0, \text{ and } (b + 1)(b - q_1) \geq (b - 1)(1 + q_1). \] If we set \(a = b^2 \), then \(a^2 + 1 \geq (a^2 - q_1) \geq (a^2 - 1)(1 + q_1) \) and we have \(a^2 + 1 \geq (a^2 - 1)(1 + q_1)/(a^2 - q_1) \). Since \(u|_{\partial \Omega} \leq a \sqrt{(a^2 + 1)f_i^2 - x_i^2}|_{\partial \Omega} \), by Theorem 2.11, \(u \leq a \sqrt{(a^2 + 1)f_i^2 - x_i^2} \) in \(\Omega \) and we have \(u \leq \sqrt{b} \sqrt{(b + 1)f^2 - x_i^2} \) in \(\Omega \).

By Theorems 2.12 and 2.13, we know that the growth rate of \(u \) is of the same order as the shape of \(\Omega \) and \(u|_{\partial \Omega} \).

Acknowledgment

The author would like to thank the referee for many helpful comments and suggestions.
REFERENCES

Institute of Mathematics, Academia Sinica, Taipei 11529, Taiwan, Republic of China