LINKED PAIRS OF CONTRACTIBLE POLYHEDRA IN S^n

CRAIG R. GUILBAULT

(Communicated by James West)

Abstract. B. Mazur has described a geometrically linked pair of compact contractible polyhedra in S^4. In this note we exhibit an even more extreme type of linking between compact contractible polyhedra in S^n, $n \geq 5$.

1. Introduction

Disjoint compacta $A_1, A_2 \subset S^n$ are geometrically unlinked if there is a PL embedding $f: S^{n-1} \to S^n$ so that $f(S^{n-1})$ separates S^n into components V_1 and V_2 with $A_1 \subset V_1$ and $A_2 \subset V_2$. In this case, V_1 and V_2 are contractible polyhedra (see (2) from §2), so by taking interiors of sufficiently small regular neighborhoods of V_1 and V_2 we see that if A_1 and A_2 are geometrically unlinked they also satisfy

Definition. Disjoint compacta $A_1, A_2 \subset S^n$ are fundamentally unlinked if there is a cover $\{U_1, U_2\}$ of S^n by contractible open sets so that $A_i \subset U_i$ for $i = 1, 2$ and $A_i \cap U_j = \emptyset$ when $i \neq j$.

If A_1 and A_2 are disjoint compact contractible polyhedra in S^n and $n \leq 3$, then they are geometrically unlinked. Indeed, if $N(A_1)$ is a regular neighborhood of A_1 disjoint from A_2, then $\partial N(A_1)$ is a PL $(n-1)$-sphere separating A_1 from A_2. In [Ma] Mazur made the surprising observation that, in S^4, a disjoint pair of compact contractible polyhedra may be geometrically linked. To do this, he constructed a compact contractible 4-manifold M (now known as a “Mazur manifold”) which has nonsimply connected boundary and may be viewed as a regular neighborhood of a contractible 2-complex D contained in its interior. He then observes that the double, $M_1 \cup_\partial M_2$, of M is a PL 4-sphere and D_1 and D_2 are geometrically linked therein. Notice, however, that D_1 and D_2 are fundamentally unlinked.

A strategy similar to Mazur’s may be used to produce pairs of geometrically linked, but fundamentally unlinked, compact contractible polyhedra in S^n for all $n \geq 4$. In this note we show that for $n \geq 5$ there exist fundamentally linked pairs of compact contractible polyhedra in S^n.

Received by the editors November 6, 1992.

1991 Mathematics Subject Classification. Primary 57N15, 57Q99.

©1994 American Mathematical Society
0002-9939/94 $1.00 + .25$ per page
2. Preliminaries

Throughout this paper we work in the PL category; all complexes are simplicial, manifolds are combinatorial, and maps are piecewise linear. All homology is with \(\mathbb{Z} \)-coefficients.

A group \(G \) is perfect if its abelianization, \(G/[G, G] \), is the trivial group. A space \(X \) is acyclic if \(\tilde{H}_k(X) = 0 \) for all \(k \). A compact acyclic \(n \)-manifold is called a homology \(n \)-cell. An \(n \)-manifold with homology groups isomorphic to those of \(S^n \) is called a homology \(n \)-sphere.

The following facts are well known. They follow from standard results of algebraic topology including the VanKampen, Mayer-Vietoris, and Universal Coefficient theorems, as well as duality, the Hurewicz Theorem, and a theorem of Whitehead. We list them here for easy reference.

(1) The boundary of a homology \(n \)-cell is a homology \((n-1) \)-sphere.

(2) If \(\Sigma^{n-1} \subset S^n \) is a homology \((n-1) \)-sphere and \(V_1 \) and \(V_2 \) are the components of \(S^n - \Sigma^{n-1} \), then \(V_1 \) and \(V_2 \) are acyclic. If \(\Sigma^{n-1} \) is simply connected, then \(V_1 \) and \(V_2 \) are simply connected and thus contractible. If \(\Sigma^{n-1} \) is locally flat, then \(V_1 \) and \(V_2 \) are homology \(n \)-cells.

(3) The union of two homology \(n \)-cells among a common boundary is a homology \(n \)-sphere.

3. Main result

Theorem 3.1. For any \(n \geq 5 \), there exists a fundamentally linked pair of compact contractible polyhedra in \(S^n \).

We will need the following lemmas. Both are tailored to the proof of Theorem 3.1 and could be stated in greater generality if so desired.

Lemma 3.2. Let \(K \) be a finite acyclic 2-complex with fundamental group \(G \). Then, for any \(n \geq 5 \), there exists a homology \(n \)-sphere \(\Sigma^n \) with \(\pi_1(\Sigma^n) \cong G \times G \).

Proof. For \(n \geq 8 \), we may embed \(K \times K \) in \(\mathbb{R}^{n+1} \). A regular neighborhood \(N \) of this embedding is a homology \((n+1)\)-cell, so, by (1), \(\partial N \) is a homology \(n \)-sphere; moreover, by general position, \(\pi_1(\partial N) \cong \pi_1(N) \cong G \times G \). Now, since \(G \times G \) is the fundamental group of some high-dimensional homology sphere, the proof of Theorem 1 in [Ke], together with the remarks that precede it, show implicitly that there is an acyclic 3-complex, \(L \), with \(\pi_1(L) \cong G \times G \). Hence, for \(n \geq 6 \), we may use the same strategy as above. Finally, for \(n = 5 \), apply [St] to obtain a 3-complex \(L' \subset \mathbb{R}^6 \) which is simple homotopy equivalent to \(L \), and let \(\Sigma^n \) be the boundary of a regular neighborhood of \(L' \). \(\square \)

Remark. Nonsimply connected, acyclic 2-complexes are plentiful. For example, removing the interior of a 3-ball from a nonsimply connected homology 3-sphere produces a homology 3-cell with the same fundamental group. This homology cell may then be collapsed onto a 2-dimensional subcomplex.

Lemma 3.3. Let \(K \) be a finite complex with perfect fundamental group \(G \). If \(K \) may be written as \(U \cup V \), where \(U \) and \(V \) are open (not necessarily connected) subsets of \(K \), such that loops lying completely within either \(U \) or \(V \) contract in \(K \), then \(K \) is simply connected.

Proof. By [Wr, Lemma 7.2], \(G \) must be a free group, but the only perfect free group is trivial. \(\square \)
Proof of Theorem 3.1. Let K be an acyclic 2-complex with nontrivial fundamental group G. By Lemma 3.2, we may choose a homology n-sphere, Σ^n with $\pi_1(\Sigma^n, q) \cong G \times G$. Let $G_1, G_2, G_3 < \pi_1(\Sigma^n, q)$ correspond to $G \times \{1\}$, $\{1\} \times G$, $\Delta_G = \{(g, g) | g \in G\} < G \times G$, respectively. Choose PL embeddings $e_i : (K, p) \to (\Sigma^n, q)$ for $i = 1, 2, 3$ so that image(e_i) = $\pi_1(K, p) \to \pi_1(\Sigma^n, q)$ = G_i for each i. By general position, we may homotope e_1 and e_2 to embeddings e'_1 and e'_2 so that e'_1 and e'_2, and e_3 have pairwise disjoint images which we will denote by K_1, K_2, and K_3. Choose regular neighborhoods N_1 and N_2 of K_1 and K_2 so that N_1, N_2, and K_3 are pairwise disjoint. Let $W = \Sigma^n - \text{int}(N_1 \cup N_2)$, and choose embedded arcs α_1 and α_2 in W from q to points $q_1 \in \partial N_1$ and $q_2 \in \partial N_2$, respectively. Since G_1 is a normal subgroup of $\pi_1(\Sigma^n, q)$ (thus, invariant under conjugation), image($\pi_1(N_i \cup \alpha_i)$) = G_i for $i = 1, 2$. Furthermore, since K_i has codimension ≥ 3, the inclusions $\Sigma^n - (K_1 \cup K_2) \subset \Sigma^n$ and $N_i - K_i \subset N_i$ ($i = 1, 2$) induce π_1-isomorphisms. Utilizing the collar structures on $N_i - K_i$, we may conclude that $W \subset \Sigma^n$ and $\partial N_i \subset N_i$ induce π_1-isomorphisms. By a slight abuse of notation, we write $\pi_1(W, q) = G_1 \times G_2$ with image($\pi_1(\partial N_i \cup \alpha_i, q)$) = G_i, $i = 1, 2$.

By (1) of §2, ∂N_i and ∂N_2 are homology $(n-1)$-spheres; so, by [Ke, p. 71], there exist (combinatorial) compact contractible manifolds C_1 and C_2 with $\partial C_i \approx \partial N_i$ for each i. If $W \cup_\partial C_i$ denotes the space obtained by gluing ∂C_i to W along ∂N_i, VanKampen’s theorem gives an isomorphism $\pi_1(W \cup_\partial C_i, q) \to (G_1 \times G_2)/G_i$ for $i = 1, 2$. Furthermore, since the composition $G_i \to G_1 \times G_2 \to (G_1 \times G_2)/G_i$ is an isomorphism for $i = 1, 2$, we have inclusion induced isomorphisms, $\pi_1(K_3) \to \pi_1(W \cup_\partial C_i)$.

Reasoning as above, $\pi_1(W \cup_\partial (C_1 \cup C_2), q) \cong (G_1 \times G_2)/(G_1 \cup G_2) = \{1\}$.

Furthermore, by two applications of (3), $W \cup_\partial (C_1 \cup C_2)$ is a homology sphere. Hence, by the PL Generalized Poincaré Conjecture [Sm], $W \cup_\partial (C_1 \cup C_2) \approx S^n$.

Claim. C_1 and C_2 are fundamentally linked in $W \cup_\partial (C_1 \cup C_2) \approx S^n$.

Suppose there is an open cover $\{U_1, U_2\}$ of $W \cup_\partial (C_1 \cup C_2)$ by contractible sets with $C_i \subset U_i$ for $i = 1, 2$ and $C_i \cap U_j = \emptyset$ when $i \neq j$. Then $\{U_1 \cap K_3, U_2 \cap K_3\}$ is an open cover of K_3. By Lemma 3.3, we may assume without loss of generality that $U_1 \cap K_3$ contains a loop λ which is nontrivial in K_3. Now, U_1 is contractible, so λ contracts in $U_1 \subset W \cup_\partial C_1$. But, since $K_3 \subset W \cup_\partial C_1$ induces a π_1-isomorphism, this is impossible. □

Remark. In the above construction, the contractibility of U_i was only used to assert that a loop $\lambda \subset U_i$ contracts in U_i. Hence, we have actually shown that S^n cannot be covered by simply connected open sets U_1 and U_2 containing C_1 and C_2, respectively, and with $U_i \cap C_j = \emptyset$ for $i \neq j$.

Question. Does there exist a pair of fundamentally linked compact contractible polyhedra in S^4?

References

Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201

E-mail address: craigg@csd4.csd.uwm.edu