Representing characteristic homology classes of

Authors:
Jian Han Guo and Dan Yan Gan

Journal:
Proc. Amer. Math. Soc. **121** (1994), 1251-1255

MSC:
Primary 57R95; Secondary 57R40

DOI:
https://doi.org/10.1090/S0002-9939-1994-1205494-7

MathSciNet review:
1205494

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the following theorems.

**Theorem 1.** *If* *is a characteristic homology class with* *and* (1) *provided* , *or* (2) *provided* .

*Suppose that the 11/8-conjecture is true. Then x cannot be represented by a smoothly embedded 2-sphere*.

**Theorem 2.** *Let* *be a primitive characteristic homology class with* . *Then x can be represented by a smoothly embedded 2-sphere*.

**[D1]**S. K. Donaldson,*An application of gauge theory to four-dimensional topology*, J. Differential Geom.**18**(1983), no. 2, 279–315. MR**710056****[D2]**S. K. Donaldson,*Connections, cohomology and the intersection forms of 4-manifolds*, J. Differential Geom.**24**(1986), no. 3, 275–341. MR**868974****[FK]**Michael Freedman and Robion Kirby,*A geometric proof of Rochlin’s theorem*, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 85–97. MR**520525****[GG1]**Dan Yan Gan and Jian Han Guo,*Smooth embeddings of 2-spheres in manifolds*, J. Math. Res. Exposition**10**(1990), no. 2, 227–232. MR**1057302****[GG2]**Dan Yan Gan and Jian Han Guo,*Embeddings and immersions of a 2-sphere in 4-manifolds*, Proc. Amer. Math. Soc.**118**(1993), no. 4, 1323–1330. MR**1152976**, https://doi.org/10.1090/S0002-9939-1993-1152976-1**[Go]**Robert E. Gompf,*Infinite families of Casson handles and topological disks*, Topology**23**(1984), no. 4, 395–400. MR**780732**, https://doi.org/10.1016/0040-9383(84)90002-8**[KM]**Michel A. Kervaire and John W. Milnor,*On 2-spheres in 4-manifolds*, Proc. Nat. Acad. Sci. U.S.A.**47**(1961), 1651–1657. MR**0133134****[K]**Ken’ichi Kuga,*Representing homology classes of 𝑆²×𝑆²*, Topology**23**(1984), no. 2, 133–137. MR**744845**, https://doi.org/10.1016/0040-9383(84)90034-X**[L]**Terry Lawson,*Representing homology classes of almost definite 4-manifolds*, Michigan Math. J.**34**(1987), no. 1, 85–91. MR**873022**, https://doi.org/10.1307/mmj/1029003485**[Li]**Bang He Li,*Embeddings of surfaces in 4-manifolds. I, II*, Chinese Sci. Bull.**36**(1991), no. 24, 2025–2029, 2030–2033. MR**1150851****[Lu]**Feng Luo,*Representing homology classes of 𝐶𝑃²#\overline{𝐶𝑃}²*, Pacific J. Math.**133**(1988), no. 1, 137–140. MR**936360****[W1]**C. T. C. Wall,*On the orthogonal groups of unimodular quadratic forms*, Math. Ann.**147**(1962), 328–338. MR**0138565**, https://doi.org/10.1007/BF01440955**[W2]**C. T. C. Wall,*Diffeomorphisms of 4-manifolds*, J. London Math. Soc.**39**(1964), 131–140. MR**0163323**, https://doi.org/10.1112/jlms/s1-39.1.131

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57R95,
57R40

Retrieve articles in all journals with MSC: 57R95, 57R40

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1205494-7

Keywords:
Representing,
characteristic homology class,
primitive

Article copyright:
© Copyright 1994
American Mathematical Society