Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A duality theorem for interpolation methods associated to polygons


Authors: Fernando Cobos and Pedro Fernández-Martínez
Journal: Proc. Amer. Math. Soc. 121 (1994), 1093-1101
MSC: Primary 46M35; Secondary 46B70
DOI: https://doi.org/10.1090/S0002-9939-1994-1209420-6
MathSciNet review: 1209420
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate dual spaces of interpolation spaces defined by means of polygons. We first show that dual spaces may fail to be intermediate spaces with respect to the dual N-tuple, and then we prove that dual spaces of J-spaces can be identified with closed subspaces of K-spaces generated by the dual N-tuple.


References [Enhancements On Off] (What's this?)

  • [1] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer, Berlin, Heidelberg, and New York, 1976. MR 0482275 (58:2349)
  • [2] F. Cobos and P. Fernández-Martinez, Reiteration and a Wolff theorem for interpolation methods defined by means of polygons, Studia Math. 102 (1992), 239-256. MR 1170554 (93i:46140)
  • [3] F. Cobos, P. Fernández-Martinez, and T. Schonbek, Norm estimates for interpolation methods defined by means of polygons, J. Approx. Theory (to appear). MR 1320157 (96b:46106)
  • [4] F. Cobos, T. Kühn, and T. Schonbek, One-sided compactness results for Aronszajn-Gagliardo functors, J. Funct. Anal. 106 (1992), 274-313. MR 1165856 (93c:46135)
  • [5] F. Cobos and J. Peetre, Interpolation of compact operators: The multidimensional case, Proc. London Math. Soc. 63 (1991), 371-400. MR 1114514 (92h:46110)
  • [6] R. R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher, and G. Weiss, A theory of complex interpolation for families of Banach spaces, Adv. Math. 43 (1982), 203-229. MR 648799 (83j:46084)
  • [7] J. B. Conway, A course in functional analysis, Springer, New York, Berlin, Heidelberg, and Tokyo, 1985. MR 768926 (86h:46001)
  • [8] M. Cwikel and S. Janson, Real and complex interpolation methods for finite and infinite families of Banach spaces, Adv. Math. 66 (1987), 234-290. MR 915856 (89e:46082)
  • [9] G. Dore, D. Guidetti, and A. Venni, Some properties of the sum and intersection of normed spaces, Atti Sem. Mat. Fis. Univ. Modena 31 (1982), 325-331. MR 742678 (85h:46100)
  • [10] -, Complex interpolation for $ {2^N}$ Banach spaces, Rend. Sem. Mat. Univ. Padova 76 (1986), 1-36. MR 881557 (88i:46095)
  • [11] D. L. Fernandez, Interpolation of $ {2^n}$ Banach spaces, Studia Math. 45 (1979), 175-201. MR 557490 (81e:46065)
  • [12] -, On the duality of interpolation spaces of several Banach spaces, Acta Sci. Math. (Szeged) 44 (1982), 43-51. MR 660511 (84b:46090)
  • [13] -, Interpolation of $ {2^d}$ Banach spaces and the Calderón space $ X(E)$, Proc. London Math. Soc. 56 (1988), 143-162. MR 915534 (89f:46134)
  • [14] J. Peetre, Duality for Fernandez type spaces, Math. Nachr. 119 (1984), 231-238. MR 774193 (86m:46072)
  • [15] G. Sparr, Interpolation of several Banach spaces, Ann. Mat. Pura Appl. 99 (1974), 247-316. MR 0372641 (51:8848)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46M35, 46B70

Retrieve articles in all journals with MSC: 46M35, 46B70


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1209420-6
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society