CORRIGENDUM TO
"ON HAUSDORFF DIMENSION OF RECURRENT NET FRACTALS"

SERGIO STELLA

(Communicated by Kenneth Meyer)

In the proof of Theorem 3.1 in [6] a characterization of Larma's finite-dimen-
sional metric spaces due to Rogers [5] was taken for granted and used. Since this characterization is not true in general, in this note we add a further hypothesis on the complete metric space treated in [6] which guarantees the validity of Theorem 3.1. Moreover, some natural conditions tacitly assumed in [6] are made explicit, thus extending the geometric analysis. Proposition 1.1 is correctly stated and improved.

By defining in [6] net fractals in a complete metric space, we intended to provide a procedure for generating sets which look like fractals. They are expected to be, topologically, at least perfect subsets of the given metric space and in particular uncountable sets. In [6] we, tacitly, assumed (without explicitly stating) that

\[\mathcal{N} \cap \text{int}(A_{\lfloor n \rfloor}) \neq \emptyset \quad \forall \lfloor n \rfloor, \]

which guarantees that \(\mathcal{N} \) has the above topological properties. Further (A) is a natural condition and necessary to avoid that the geometric procedure described in [6] collapses. In fact, if (A) is not assumed the set \(\mathcal{N} \) might be contained in the boundary set \(B := \bigcup_{\lfloor n \rfloor} A_{\lfloor n \rfloor} \setminus \text{int}(A_{\lfloor n \rfloor}) \); thus, by standard results (see [3]), in that case we will have \(\mathcal{H}^s_d(\mathcal{N}) = 0 \), for any dimension \(s \) for which \(\mathcal{H}^s_d(\mathcal{N}) < \infty \) (here \(\mathcal{H}^s_d \) and \(\mathcal{H}^s_D \) represent the Hausdorff measures with respect to the metrics \(d \) and \(D \) used in [6]). Therefore, conditions (2) and (3) in [6] would become insignificant within the scope of the dimension estimate of \(\mathcal{N} \).

See also the discussion about net fractals generated by 'proper constructions' in [1], which is the reference given in [6] for the original definition.

An analogous assumption was made in [6, §4] for the self-similar set \(K \). It is natural to assume, as it happens in most concrete examples, that \(K \) is not completely contained in the boundary of the open set \(O \), for otherwise, \(K \) would be the kernel of a geometric scheme does not satisfy condition (A); consequently, by the above remarks, it would be \(\mathcal{H}^s_d(K) = 0 \) for any \(s \) such that \(\mathcal{H}^s_d(K) < \infty \). In particular, this is the case when \(s \) is the similarity dimension (see [2]) of \(K \). Hence, when \(K \subsetneq \overline{O} \setminus O \), in general we have

\[\dim_H(K) < \text{similarity dimension of } K. \]

Received by the editors May 7, 1993.
1991 Mathematics Subject Classification. Primary 28A75.

©1994 American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Although Proposition 1.1 in [6] is not used to get the main results, it must be noted that as proved in [6] the topology of \((\Omega, D)\) is always finer than that of \((\Omega, d)\) but that the topological equivalence, there stated, may fail on the boundary set \(B \cap \mathcal{N}\). However, for any dimension \(s\) for which \(H_d^s(\mathcal{N}) < \infty\), applying again the remarks above, we get the topological equivalence of \(d\) and \(D\) modulo a subset of zero \(H_s^\beta\)-measure and thus of zero \(H_d^s\)-measure. In particular, when \(H_d^s(\mathcal{N}) < \infty\), and this is the case for net fractals satisfying the hypothesis of Theorems 2.2 and 3.1, the space \((\mathcal{N}, d)\) is the disjoint union of an ultrametric subspace and a subset of zero \(H_d^s\)-measure. In particular,

\[\mathcal{N}\]

has the same Hausdorff measure of an

ultametric, topologically zero-dimensional, totally disconnected subspace,

showing that from a measure-theoretic point of view net fractals satisfying the hypothesis of Theorem 3.1 are always ultrametric net fractals.

In the proof of Theorem 3.1 we employed a characterization of Larman’s finite dimensionality due to Rogers [5, p. 104 l.1 and p. 122, Theorem 57 condition (b)], taking for granted that if \(H^n(A) = 0\) for some positive integer \(n\), then \(A\) is finite dimensional in the sense of Larman [4].

While the converse is always true (see [4, corollary to Theorem 4]), this implication is in general false. In fact, for any Hausdorff function \(h(t)\), any set \(A \subseteq \Omega\) contains a countable subset \(A'\) with \(h(A) = h(A')\), in Larman’s notation. But \(A\) and hence \(A'\) may not be finite dimensional.

Let \(\mathcal{N}' : = \{x_i|n\}_{|i|n}\), where \(\{x_i|n\}_{|i|n}\) is the family of point centers of the open balls involved in condition (3) in [6], and call it the expanded net fractal associated with \(\mathcal{N}\).

We have \(\mathcal{N}' = \mathcal{N} \cup \{x_i|n\}_{|i|n}\). In fact, clearly \(\mathcal{N} \subseteq \mathcal{N}'\) and if \(x\) is an accumulation point of \(\{x_i|n\}_{|i|n}\), we can find a sequence \((x_i|n(k))_k\) with \(\lim_{k \to \infty} x_i|n(k) = x\). Since the coordinates \(i_j\) of the curtailed indexes \(i|n(k)\) can assume only a finite number of values, by a standard diagonal argument, we can determine an index, say \(j\), such that \((x_{\tilde{j}|n(k)})_k\) is a subsequence of \((x_i|n(k))_k\) and \(j|n(l + 1)\) is an extension of \(j|n(l)\). It follows that \(x = \lim_{i \to \infty} x_{i|n(l)} = \bigcap_{n=1}^{\infty} A_{i|n} \in \mathcal{N}\) and thus the claim also follows. Moreover, an analogous argument shows that \(\mathcal{N}'\) is sequentially compact and thus compact. Further \(H^s(\mathcal{N}') = H^s(\mathcal{N})\) since \(\{x_i|n\}_{|i|n}\) is countable.

The proof of Theorem 1.3 remains essentially the same if we can use the property

the expanded net fractal \(\mathcal{N}'\) is a \(\beta\)-space.

In general complete metric spaces, in order to guarantee that \(\mathcal{N}'\) is a \(\beta\)-space, we need a further condition concerning the relative position of the points \(\{x_i|n\}_{|i|n}\). However, we are not concerned here with a suitable modification of the basic requirements (1), (2), and (3) in [6] for a net fractal. A complete analysis will appear elsewhere. But we indicate a class of metric spaces, significant from a geometric point of view, in which the above property is automatically satisfied. It is the class of \(locally\ finite-dimensional\ metric spaces\), i.e., the spaces in which every point admits a neighbourhood which is finite dimensional in the sense of Larman [4]. In fact, in these spaces, as we can see using Theorems 11 and 12 in [4], any compact subset is a \(\beta\)-space.
Among the spaces included in this large class, we find the Euclidean spaces and the Riemannian manifolds of class 2.

On page 397 replace lines 11–15 by:

If \(U \cap A_{i_{j_{n(i)}}} \neq \varnothing \), then we can find a ball \(B(x, \, 2\rho) \) in \(\mathcal{N}' \) such that \(U \) and \(A_{i_{j_{n(i)}}} \cap \mathcal{N}' \) are contained in it. Since \(\mathcal{N}' \) is a \(\beta \)-space (for instance with triple \((M, \delta, \alpha)\)), it follows that at most \(M^q \) disjoint balls of radius \(\rho \alpha^k \) intersect \(B(x, \, 2\rho) \) where \(q \) satisfies \((2\alpha)^q \leq \alpha^{k+1} < (2\alpha)^q \). Since \(\alpha^k \rho \leq \lambda h \rho \), at most \(M^q \) balls of radius \(\lambda h \rho \) can meet \(B(x, \, 2\rho) \), hence at most \(M^q \) of the sets \(\{ A_{i_1, \ldots, i_{n(i)}} \} \) can meet \(U \).

On page 397 in lines 18 and 20 replace \(M^k \) by \(M^q \).

On page 399 in line 35, replace ‘\(O \) to be bounded’ by ‘\(O \) to be bounded and regular open’.

References

Dipartimento di Matematica e Informatica, Universita’ Degli Studi di Udine, Via Zanon 6, 3310 Udine, Italy

Current address: Via Monte S. Michele, 7, 33100 Udine, Italy