We investigate a function which will be used to evaluate the linear recursion

\[x_i = a_{i,0} + \sum_{j=1}^{i-1} a_{i,j}x_j \quad \text{for } i = 1, 2, 3, \ldots, n \]

where the \(a_{ij} \)'s are arbitrary numbers.

We can express this in matrix notation as \(X = C + AX \) where

\[
C = \begin{bmatrix}
 a_{10} \\
 . \\
 . \\
 . \\
 . \\
 a_{n0}
\end{bmatrix}, \quad
A = \begin{bmatrix}
 0 & 0 & 0 & \cdots & 0 \\
 a_{21} & 0 & 0 & \cdots & 0 \\
 a_{31} & a_{32} & 0 & \cdots & 0 \\
 . & . & . & \cdots & . \\
 . & . & . & \cdots & . \\
 a_{n1} & a_{n2} & a_{n3} & \cdots & 0
\end{bmatrix}, \quad
X = \begin{bmatrix}
 x_1 \\
 . \\
 . \\
 . \\
 . \\
 x_n
\end{bmatrix}
\]

\(A \) is referred to as the coefficient matrix, \(C \) as the constant vector, and \(X \) as the solution vector.

Definition. For \(0 < j < 2^n \), \(1 \leq i \leq 2^n \), we define a sequence of functions \(f_0(i, j) \), \(f_1(i, j) \), \(f_2(i, j) \), \ldots, \(f_n(i, j) \) such that

\[
f_{r+1}(i, j) = \begin{cases}
 f_r(i, j) + \sum_{k=j+2^r-b}^{j+2^{r+1}-b-1} f_r(i, k) f_r(k, j) & \text{if } j \equiv b \pmod{2^{r+1}}, \\
 f_r(i, j) & \text{otherwise}
\end{cases}
\]

for \(0 \leq r < n \), with

\[f_0(i, j) = a_{i,j} \quad \text{and} \quad a_{i,j} = 0 \quad \text{for } i \leq j. \]

Remark. \(a_{i,j} = 0 \) for \(i \leq j \) implies \(f_r(i, j) = 0 \) for \(i \leq j \).

By repeatedly applying this recursive definition we can express any \(f_{r+1}(i, j) \) in terms of \(f_r, f_{r-1}, \ldots \), and finally \(f_0 \), and thus express \(f_{r+1}(i, j) \) as a function of \(a \)'s only.
Examples.

\[f_1(4, 0) = f_0(4, 0) + f_0(4, 1)f_0(1, 0) = a_{4, 0} + a_{4, 1}a_{1, 0}, \]
\[f_1(5, 1) = f_0(5, 1) = a_{5, 1}, \]
\[f_2(3, 0) = f_1(3, 0) + f_1(3, 2)f_1(2, 0) \]
\[= f_0(3, 0) + f_0(3, 1)f_0(1, 0) + f_0(3, 2)[f_0(2, 0) + f_0(2, 1)f_0(1, 0)] \]
\[= a_{3, 0} + a_{3, 1}a_{1, 0} + a_{3, 2}(a_{2, 0} + a_{2, 1}a_{1, 0}). \]

Theorem. Let \(j \equiv b \mod 2^r \), \(0 < b < 2^r \); then

\[f_r(i, j) = a_{i, j} + \sum a_{i, j(1)}a_{j(1), j(2)} \cdots a_{j(u), j} \]

where the sum is over all \(u \)-tuples \((j(1), \ldots, j(u))\) satisfying \(j < j(1) < \cdots < j(u) < \min\{j + 2^r - b, i\}\), where \(0 < u < \min\{2^r - b, i - j\} \).

Proof. Our proof is by induction on \(r \). We observe that

\[f_0(i, j) = a_{i, j}, \]
\[f_1(i, j) = \begin{cases} a_{i, j} + a_{i, j+1}a_{j+1, j} & \text{if } j \equiv 0 \mod 2, \\ a_{i, j} & \text{otherwise.} \end{cases} \]

So the result is verified for \(r = 0 \) and \(r = 1 \).

Assume the result is valid for \(r = s \). Now using this, we will deduce the corresponding result for \(s + 1 \):

\[f_{s+1}(i, j) = a_{i, j} + \sum a_{i, j(1)}a_{j(1), j(2)} \cdots a_{j(u), j} \]

where the sum is over all \(u \)-tuples \((j(1), \ldots, j(u))\) satisfying \(j < j(1) < \cdots < j(u) < \min\{j + 2^{s+1} - b, i\}\), where \(0 < u < \min\{2^{s+1} - b, i - j\} \) and \(j \equiv b \mod 2^{s+1} \), \(0 < b < 2^{s+1} \).

We consider three cases.

Case 1. \(j \equiv b \mod 2^{s+1} \), \(2^s \leq b < 2^{s+1} \). In this case \(f_{s+1}(i, j) = f_s(i, j) \) by definition, and by the induction hypothesis

\[f_{s+1}(i, j) = a_{i, j} + \sum a_{i, j(1)}a_{j(1), j(2)} \cdots a_{j(u), j}, \]

where \(0 < u < \min\{2^s - b', i - j\} \) and \(j \equiv b' \mod 2^s \), \(0 < b' < 2^s \).

But \(j \equiv b \mod 2^{s+1} \), \(2^s \leq b < 2^{s+1} \), implies \(j \equiv b - 2^s \mod 2^s \), \(0 \leq b < 2^s \), and \(b' = b - 2^s \). Therefore

\[f_{s+1}(i, j) = a_{i, j} + \sum a_{i, j(1)}a_{j(1), j(2)} \cdots a_{j(u), j}, \]

where \(0 < u < \min\{2^{s+1} - b, i - j\} \) and \(j \equiv b \mod 2^{s+1} \), \(2^s \leq b < 2^{s+1} \).

Case 2. \(j \equiv b \mod 2^{s+1} \), \(0 \leq b < 2^s \), and \(i < j + 2^s - b \). It follows by definition that \(f_{s+1}(i, j) = f_i(i, j) \) and by the induction hypothesis

\[f_{s+1}(i, j) = a_{i, j} + \sum a_{i, j(1)}a_{j(1), j(2)} \cdots a_{j(u), j}, \]

where \(0 < u < \min\{2^s - b', i - j\} \) and \(j \equiv b' \mod 2^s \), \(0 < b' < 2^s \). Since \(j \equiv b \mod 2^{s+1} \), \(0 \leq b < 2^s \), implies \(j \equiv b \mod 2^s \), \(0 \leq b < 2^s \), we have
b' = b. Then \(\min\{j + 2^s - b, i\} = i = \min\{j + 2^{s+1} - b, i\} \), since \(i \leq j + 2^s - b \). Therefore

\[
fs_{+1}(i, j) = a_{i, j} + \sum a_{i, j(1)}a_{j(1), j(2)}\cdots a_{j(u), j},
\]

\(j < j(u) < \cdots < j(1) < \min\{j + 2^{s+1} - b, i\} \),

where \(0 < u < \min\{2^{s+1} - b, i - j\} \) and \(j \equiv b \pmod{2^{s+1}} \), \(0 \leq b < 2^s \), and \(i \leq j + 2^s - b \).

Case 3. \(j \equiv b \pmod{2^{s+1}} \), \(0 \leq b < 2^s \), and \(i > j + 2^s - b \). By definition

\[
f_{s+1}(i, j) = f_{s}(i, j) + \sum_{k = j + 2^s - b}^{j + 2^{s+1} - b - 1} \sum_{\min\{j + 2^s + x - b, i\} - 1} f_{s}(i, k)f_{s}(k, j).
\]

From the induction hypothesis

\[
f_{s}(i, k) = a_{i, k} + \sum a_{i, k(1)}a_{k(1), k(2)}\cdots a_{k(u), k},
\]

\(k < k(u) < \cdots < k(1) < \min\{k + 2^s - c, i\} \),

where \(0 < u < \min\{2^s - c, i - k\} \) and \(k \equiv c \pmod{2^s} \), \(0 \leq c < 2^s \). When \(j + 2^s - b \leq k < j + 2^{s+1} - b \), \(k = j + 2^s - b + c \) and \(k + 2^s - c = j + 2^{s+1} - b \). Therefore, for all \(k \) such that \(j + 2^s - b \leq k < j + 2^{s+1} - b \) we have

(i)

\[
f_{s}(i, k) = a_{i, k} + \sum a_{i, k(1)}a_{k(1), k(2)}\cdots a_{k(u), k},
\]

\(k < k(u) < \cdots < k(1) < \min\{j + 2^{s+1} - b, i\} \),

where \(0 < u < \min\{j + 2^{s+1} - b, i\} - k \) and \(j \equiv b \pmod{2^{s+1}} \), \(0 \leq b < 2^s \).

Also, by the induction hypothesis

\[
f_{s}(k, j) = a_{k, j} + \sum a_{k, j(1)}a_{j(1), j(2)}\cdots a_{j(u), j},
\]

\(j < j(v) < \cdots < j(1) < \min\{j + 2^s - b', k\} \),

where \(0 < v < \min\{2^s - b', k - j\} \) and \(j \equiv b' \pmod{2^s} \), \(0 \leq b' < 2^s \). But since \(j \equiv b \pmod{2^{s+1}} \), \(0 \leq b < 2^s \), it follows that \(b' = b \), and when \(j + 2^s - b \leq k < j + 2^{s+1} - b \) we have \(\min\{j + 2^s - b, k\} = j + 2^s - b \). Therefore, for all \(k \) such that \(j + 2^s - b \leq k < j + 2^{s+1} - b \)

(ii)

\[
f_{s}(k, j) = a_{k, j} + \sum a_{k, j(1)}a_{j(1), j(2)}\cdots a_{j(u), j},
\]

\(j < j(v) < \cdots < j(1) < j + 2^s - b \),

where \(0 < v < 2^s - b \) and \(j \equiv b \pmod{2^{s+1}} \), \(0 \leq b < 2^s \).
It follows from (i) and (ii) that

$$\min\{j + 2^{s+1} - b, i\} - 1 \sum_{k=j+2^s-b}^{\min\{j + 2^{s+1} - b, i\} - 1} f_s(i, k) f_s(k, j)$$

$$= \sum_{k=j+2^s-b}^{\min\{j + 2^{s+1} - b, i\} - 1} \left(a_i, k, a_j, j + \sum_{j(v)} a_i, k, a_j, j(1) \cdots a_j(v), j \right)$$

$$+ \sum_{k(u)} a_i, k(1) \cdots a_k(u), k a_k, j$$

$$+ \sum_{k(v)} a_i, k(1) \cdots a_k(u), k a_k, j(1) \cdots a_j(v), j$$

where \(k < k(u) < \cdots < k(1) < \min\{j + 2^{s+1} - b, i\} \),

\(j < j(v) < \cdots < j(1) < j + 2^s - b \),

\(0 < u < \min\{j + 2^{s+1} - b, i\} - k \),

\(0 < v < 2^s - b \), and \(j \equiv b \) (mod \(2^{s+1} \)), \(0 \leq b < 2^s \).

By removing the outer summation symbol and making a change of variables, we obtain

$$\min\{j + 2^{s+1} - b, i\} - 1 \sum_{k=j+2^s-b}^{\min\{j + 2^{s+1} - b, i\} - 1} f_s(i, k) f_s(k, j)$$

$$= \sum_{C(1)} a_i, j(1) a_j(1), j + \sum_{C(2)} a_i, j(1) a_j(1), j(2) \cdots a_j(v+1), j$$

$$+ \sum_{C(3)} a_i, j(1) \cdots a_j(u), j(u+1) a_j(u+1), j$$

$$+ \sum_{C(4)} a_i, j(1) \cdots a_j(u), j(u+1) a_j(u+1), j(u+2) \cdots a_j(u+v+1), j$$

where \(C(1), C(2), C(3), C(4) \) are the summation conditions:

\(C(1) \): \(j + 2^s - b \leq j(1) < \min\{j + 2^{s+1} - b, i\} \) where \(j \equiv b \) (mod \(2^{s+1} \)), \(0 \leq b < 2^s \),

\(C(2) \): \(j < j(v + 1) < \cdots < j(2) < j + 2^s - b \leq \min\{j + 2^{s+1} - b, i\} \) where

\(0 < v < 2^s - b \) and \(j \equiv b \) (mod \(2^{s+1} \)), \(0 \leq b < 2^s \),

\(C(3) \): \(j + 2^s - b \leq j(u + 1) < j(u) < \cdots < j(1) < \min\{j + 2^{s+1} - b, i\} \) where

\(0 < u < \min\{j + 2^{s+1} - b, i\} - j(u + 1) \) and \(j \equiv b \) (mod \(2^{s+1} \)), \(0 \leq b < 2^s \),

\(C(4) \): \(j < j(u + v + 1) < \cdots < j(u + 2) < j + 2^s - b \leq j(u + 1) < j(u) < \cdots < j(1) < \min\{j + 2^{s+1} - b, i\} \) where

\(0 < u < \min\{j + 2^{s+1} - b, i\} - j(u + 1) \), \(0 < v < 2^s - b \), and \(j \equiv b \) (mod \(2^{s+1} \)), \(0 \leq b < 2^s \).

Remarks.
1. \(u + v + 1 < \min\{2^{s+1} - b, i - j\} \).
2. \(C(1), C(2), C(3), C(4) \) describe a partition of the condition

\(j + 2^s - b \leq j(1) < \min\{j + 2^{s+1} - b, i\} \), \(j < j(w) < \cdots < j(2) < j(1) \).
where \(0 < w < \min\{2^{s+1} - b, i - j\} \) and \(j \equiv b \pmod{2^{s+1}} \), \(0 \leq b < 2^s \).

We now conclude

\[
\min\{j + 2^{s+1} - b, i\} - 1
\]

\[
\sum_{k=j+2^i-b}^{j} f_s(i, k) f_s(k, j) = \sum a_{i,j(1)} \cdots a_{j(w),j} ,
\]

\(j + 2^s - b \leq j(1) < \min\{j + 2^{s+1} - b, i\}, \)

\(j < j(w) < \cdots < j(2) < j(1), \)

where \(0 < w < \min\{2^{s+1} - b, i - j\} \) and \(j \equiv b \pmod{2^{s+1}} \), \(0 \leq b < 2^s \). It follows from the induction hypothesis that

\[
f_s(i, j) = a_{i,j} + \sum_{S(1)} a_{i,j(1)} \cdots a_{j(x),j} ,
\]

\(j < j(x) < \cdots < j(1) < \min\{j + 2^s - b', i\}, \)

\(0 < x < \min\{2^s - b', i - j\} \) and \(j \equiv b' \pmod{2^s} \), \(0 \leq b' < 2^s \).

We have \(j \equiv b \pmod{2^{s+1}} \), \(0 \leq b < 2^s \), therefore \(b' = b \), and since \(i > j + 2^s - b \) the \(\min\{j + 2^s - b, i\} = j + 2^s - b \).

From (iii) and (iv) we conclude that when \(j \equiv b \pmod{2^{s+1}} \), \(0 \leq b < 2^s \), and \(i > j + 2^s - b \), then

\[
f_{s+1}(i, j) = a_{i,j} + \sum_{S(1)} a_{i,j(1)} \cdots a_{j(y),j} \]

where \(S(1) \) and \(S(2) \) denote the summation conditions

\(j < j(x) < \cdots < j(1) < j + 2^s - b, \quad 0 < x < 2^s - b, \)

and \(j + 2^s - b \leq j(1) < \min\{j + 2^{s+1} - b, i\}, \)

\(j < j(w) < \cdots < j(2) < j(1), \quad 0 < w < \min\{2^{s+1} - b, i - j\}, \)

respectively. Hence we have

\[
f_{s+1}(i, j) = a_{i,j} + \sum_{S(1)} a_{i,j(1)} a_{j(1),j(2)} \cdots a_{j(y),j} ,
\]

\(j < j(y) < \cdots < j(1) < \min\{j + 2^{s+1} - b, i\}, \)

where \(0 < y < \min\{2^{s+1} - b, i - j\} \) and \(j \equiv b \pmod{2^{s+1}} \), \(0 \leq b < 2^s \), and \(i > j + 2^s - b \).

Together, Cases 1, 2, and 3 show that the theorem holds for \(r = s + 1 \), and thus for all nonnegative integers less than or equal to \(n \). \(\square \)

Corollary. \(f_n(i, 0) = a_{i,0} + \sum_{j=1}^{i-1} a_{i,j} x_j = x_i \) for \(1 \leq i \leq 2^n \).

Proof. Our proof is by induction on \(i \). The corollary is true for \(i = 1 \) and \(i = 2 \), since \(f_n(1, 0) = a_{1,0} = x_1 \) for \(n \geq 0 \) and \(f_n(2, 0) = a_{2,0} + a_{2,1} a_{1,0} = x_2 \) for \(n \geq 1 \). As an induction hypothesis, assume it holds for all \(i \leq k < 2^n \). Thus, by hypothesis we have

\[
f_n(i, 0) = a_{i,0} + \sum_{j=1}^{i-1} a_{i,j} x_j = x_i \quad \text{for} \quad 1 \leq i \leq k. \]

Now we prove the lemma for \(i = k + 1 \). We know by definition that

\[
x_{k+1} = a_{k+1,0} + \sum_{j=1}^{k} a_{k+1,j} x_j ,
\]
and by the induction hypothesis this can be written as

$$x_{k+1} = a_{k+1,0} + \sum_{j=1}^{k} a_{k+1,j} f_n(j, 0).$$

It follows from our theorem that

$$x_{k+1} = a_{k+1,0} + \sum_{j=1}^{k} a_{k+1,j} \left(a_j, 0 + \sum a_{j, j(1)} a_{j(1), j(2)} \cdots a_{j(u), 0} \right),$$

$$0 < j(u) < \cdots < j(1) < \min\{2^n, j\}, \quad 0 < u < \min\{2^n, j\},$$

and we obtain

$$x_{k+1} = a_{k+1,0} + \sum_{1 \leq j(1) \leq k} a_{k+1, j(1)} a_{j(1), 0} + \sum a_{k+1, j(1)} \cdots a_{j(u+1), 0},$$

$$0 < j(u+1) < \cdots < j(2) < j(1) \leq k, \quad 0 < u < j(1).$$

Therefore,

$$x_{k+1} = a_{k+1,0} + \sum a_{k+1+j(1)} \cdots a_{j(v), 0},$$

$$0 < j(v) < \cdots < j(1) \leq k, \quad 0 < v \leq k,$$

which can be written as

$$x_{k+1} = a_{k+1,0} + \sum a_{k+1+j(1)} \cdots a_{j(v), 0},$$

$$0 < j(v) < \cdots < j(1) \leq \min\{2^n, k+1\}, \quad 0 < v \leq \min\{2^n, k+1\},$$

and it follows by our theorem that

$$x_{k+1} = f_n(k+1, 0). \quad \Box$$

Based on the result that $f_n(i, 0) = x_i$ for $1 \leq i \leq 2^n$ Chen and Kuck [CK] give a parallel algorithm for evaluating x_i, $1 \leq i \leq 2^n$. Time and processor bounds for solving the linear recurrence system are then obtained. Sameh and Brent [SB] later presented an alternate derivation of this algorithm.

ACKNOWLEDGMENT

This paper is an abstract of the author’s doctoral thesis, completed under the guidance of David Lubell at Adelphi University.

REFERENCES

DEPARTMENT OF MATHEMATICS, SUNY, COLLEGE AT OLD WESTBURY, OLD WESTBURY, NEW YORK 11568

E-mail address: blasius@sunylgcm