Optimal programs and their price characterization in a multisector growth model with uncertainty

Author:
Nikolaos S. Papageorgiou

Journal:
Proc. Amer. Math. Soc. **122** (1994), 227-240

MSC:
Primary 90A16; Secondary 49K27, 49N15, 90A17, 93E20

DOI:
https://doi.org/10.1090/S0002-9939-1994-1195728-X

MathSciNet review:
1195728

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we examine a nonstationary multisector growth model with uncertainty in which future utilities are discounted. First we establish the existence of strongly optimal programs emanating from a given initial capital stock. Then we show that this optimal program is sustained by a system of prices so that the pair is competitive and a strong transversality condition holds. We also show that competitiveness and transversality imply optimality.

**[1]**Charalambos D. Aliprantis, Donald J. Brown, and Owen Burkinshaw,*Existence and optimality of competitive equilibria*, Springer-Verlag, Berlin, 1990. MR**1075992****[2]**K. Arrow and M. Kurz,*Public investment, the rate of return and optimal fiscal policy*, Johns Hopkins Press, Baltimore, 1970.**[3]**H. Attouch,*Variational convergence for functions and operators*, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR**773850****[4]**Giuseppe Buttazzo,*Semicontinuity, relaxation and integral representation in the calculus of variations*, Pitman Research Notes in Mathematics Series, vol. 207, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR**1020296****[5]**J. Diestel and J. J. Uhl Jr.,*Vector measures*, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR**0453964****[6]**Mario Dolcher,*Topologie e strutture di convergenza*, Ann. Scuola Norm. Sup. Pisa (3)**14**(1960), 63–92 (Italian). MR**0114201****[7]**A. D. Ioffe and V. M. Tihomirov,*Theory of extremal problems*, Studies in Mathematics and its Applications, vol. 6, North-Holland Publishing Co., Amsterdam-New York, 1979. Translated from the Russian by Karol Makowski. MR**528295****[8]**V. L. Levin,*Lebesgue decomposition for functionals on the space 𝐿^{∞}_{𝑋} of vector-valued functions*, Funkcional. Anal. i Priložen.**8**(1974), no. 4, 48–53 (Russian). MR**0370174****[9]**B. Peleg and H. Ryder,*On optimal consumption plans in a multisector economy*, Rev. Econom. Stud.**39**(1972), 159-169.**[10]**Akira Takayama,*Mathematical economics*, 2nd ed., Cambridge University Press, Cambridge, 1985. MR**832684****[11]**Martin L. Weitzman,*Duality theory for infinite horizon convex models*, Management Sci.**19**(1972/73), 783–789. MR**0337334**, https://doi.org/10.1287/mnsc.19.7.783**[12]**Kôsaku Yosida and Edwin Hewitt,*Finitely additive measures*, Trans. Amer. Math. Soc.**72**(1952), 46–66. MR**0045194**, https://doi.org/10.1090/S0002-9947-1952-0045194-X**[13]**Itzhak Zilcha,*Characterization by prices of optimal programs under uncertainty*, J. Math. Econom.**3**(1976), no. 2, 173–183. MR**0421618**, https://doi.org/10.1016/0304-4068(76)90026-4**[14]**V. Arkin and I. V. Evstigneev,*Stochastic models of control and economic dynamics*, Academic Press, London, 1987.**[15]**E. B. Dynkin,*Some probability models for a developing economy*, Soviet Math. Dokl.**12**(1971), 1422-1425.**[16]**-,*Concave stochastic dynamic programming*, Math. USSR-Sb.**16**(1972), 501-515.**[17]**I. V. Evstigneev,*Optimal stochastic programs and their stimulating prices*, Mathematical models in economics (Proc. Sympos. and Conf. von Neumann Models, Warsaw, 1972) North-Holland, Amsterdam, 1974, pp. 219–252. MR**0381650****[18]**Roy Radner,*Optimal stationary consumption with stochastic production and resources*, J. Econom. Theory**6**(1973), no. 1, 68–90. MR**0452560**, https://doi.org/10.1016/0022-0531(73)90043-4**[19]**M. I. Tacsar,*Optimal planning over infinite time interval under random factors*, Mathematical models in economics (Proc. Sympos. and Conf. on von Neumann Models, Warsaw, 1972) North-Holland, Amsterdam, 1974, pp. 289–298. MR**0401104**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
90A16,
49K27,
49N15,
90A17,
93E20

Retrieve articles in all journals with MSC: 90A16, 49K27, 49N15, 90A17, 93E20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1195728-X

Keywords:
Multisector growth model,
feasible program,
discount factor,
free disposability,
intertemporal utility,
support prices,
transversality condition

Article copyright:
© Copyright 1994
American Mathematical Society