Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A curve for which Coleman's effective Chabauty bound is sharp


Author: David Grant
Journal: Proc. Amer. Math. Soc. 122 (1994), 317-319
MSC: Primary 14H25; Secondary 14H40
DOI: https://doi.org/10.1090/S0002-9939-1994-1242084-4
MathSciNet review: 1242084
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that Coleman's effective Chabauty bound is sharp for the curve $ C:{y^2} = x(x - 1)(x - 2)(x - 5)(x - 6)$ defined over $ \mathbb{Q}$, by considering its reduction $ \bmod\;7$. We also show that the Jacobian of C is absolutely simple.


References [Enhancements On Off] (What's this?)

  • [Ch] C. Chabauty, Sur les points rationels des courbes algébriques de genre supérieur à unité, C. R. Acad. Sci. Paris Sér A-B 212 (1941), 882-884. MR 0004484 (3:14d)
  • [Co] R. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), 765-770. MR 808103 (87f:11043)
  • [F] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlköpern, Invent. Math. 73 (1983), 349-366. MR 718935 (85g:11026a)
  • [GG] D. Gordon and D. Grant, Computing the Mordell-Weil rank of Jacobians of curves of genus 2, Trans. Amer. Math. Soc. 337 (1993), 807-824. MR 1094558 (93h:11057)
  • [M] W. McCallum, The method of Chabauty-Coleman and the second case of Fermat's Last Theorem for regular primes, preprint.
  • [T] J. Top, Hecke L-series related with algebraic cycles or with Siegel modular forms, Thesis, Rijksuniversiteit te Utrecht, 1989.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14H25, 14H40

Retrieve articles in all journals with MSC: 14H25, 14H40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1242084-4
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society