Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the absolutes of compact spaces with a minimally acting group


Author: Ingo Bandlow
Journal: Proc. Amer. Math. Soc. 122 (1994), 261-264
MSC: Primary 22A05; Secondary 54D80, 54H11
DOI: https://doi.org/10.1090/S0002-9939-1994-1246512-X
MathSciNet review: 1246512
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If an $ \omega $-bounded group G acts continuously on a compact Hausdorff space X and the orbit of every point is dense in X, then X is coabsolute to a Cantor cube.


References [Enhancements On Off] (What's this?)

  • [1] A. V. Arkhangel′skiĭ, Classes of topological groups, Uspekhi Mat. Nauk 36 (1981), no. 3(219), 127–146, 255 (Russian). MR 622722
  • [2] Bohuslav Balcar and Alexander Błaszczyk, On minimal dynamical systems on Boolean algebras, Comment. Math. Univ. Carolin. 31 (1990), no. 1, 7–11. MR 1056164
  • [3] Ingo Bandlow, A construction in set-theoretic topology by means of elementary substructures, Z. Math. Logik Grundlag. Math. 37 (1991), no. 5, 467–480. MR 1270189, https://doi.org/10.1002/malq.19910372607
  • [4] Ingo Bandlow, On the absoluteness of openly-generated and Dugundji spaces, Acta Univ. Carolin. Math. Phys. 33 (1992), no. 2, 15–26. MR 1287220
  • [5] James E. Baumgartner, Applications of the proper forcing axiom, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 913–959. MR 776640
  • [6] Alan Dow, An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988), no. 1, 17–72. MR 1031969
  • [7] B. A. Efimov, Dyadic bicompacta, Trudy Moskov. Mat. Obšč. 14 (1965), 211–247 (Russian). MR 0202105
  • [8] Richard Haydon, On a problem of Pełczyński: Milutin spaces, Dugundji spaces and AE(0-dim), Studia Math. 52 (1974), 23–31. MR 0418025
  • [9] B. A. Pasynkov, The dimension and geometry of mappings, Dokl. Akad. Nauk SSSR 221 (1975), no. 3, 543–546 (Russian). MR 0377834
  • [10] A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. Rozprawy Mat. 58 (1968), 92. MR 0227751
  • [11] E. V. Ščepin, Topology of limit spaces with uncountable inverse spectra, Uspehi Mat. Nauk 31 (1976), no. 5 (191), 191–226 (Russian). MR 0464137
  • [12] L. B. Šapiro, The absolutes of topological spaces and of continuous mappings, Dokl. Akad. Nauk SSSR 226 (1976), no. 3, 523–526 (Russian). MR 0405377
  • [13] L. B. Shapiro, On spaces that are coabsolute with dyadic compacta, Dokl. Akad. Nauk SSSR 293 (1987), no. 5, 1077–1081 (Russian). MR 890202
  • [14] V. V. Uspenskiĭ, Why compact groups are dyadic, General topology and its relations to modern analysis and algebra, VI (Prague, 1986) Res. Exp. Math., vol. 16, Heldermann, Berlin, 1988, pp. 601–610. MR 952642

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22A05, 54D80, 54H11

Retrieve articles in all journals with MSC: 22A05, 54D80, 54H11


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1246512-X
Keywords: Coabsolute spaces, Dugundji space, $ \omega $-bounded group
Article copyright: © Copyright 1994 American Mathematical Society