Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the absolutes of compact spaces with a minimally acting group


Author: Ingo Bandlow
Journal: Proc. Amer. Math. Soc. 122 (1994), 261-264
MSC: Primary 22A05; Secondary 54D80, 54H11
DOI: https://doi.org/10.1090/S0002-9939-1994-1246512-X
MathSciNet review: 1246512
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If an $ \omega $-bounded group G acts continuously on a compact Hausdorff space X and the orbit of every point is dense in X, then X is coabsolute to a Cantor cube.


References [Enhancements On Off] (What's this?)

  • [1] A. V. Archangelskij, Classes of topological groups, Russian Math. Surveys 36 (1981), 151-174. MR 622722 (83d:54082)
  • [2] B. Balcar and A. Blaszczyk, On minimal dynamical systems on Boolean algebras, Comment. Math. Univ. Carolinae 31 (1990), 7-11. MR 1056164 (91h:54059)
  • [3] I. Bandlow, A construction in set theoretic topology by means of elementary substructures, Z. Math. Logik Grundlag. Math. 37 (1991). MR 1270189 (95c:03093)
  • [4] -, On the absoluteness of openly-generated and Dugundji spaces, Acta Univ. Carolin. --Math. Phys. 31 (1992). MR 1287220 (95i:54021)
  • [5] J. Baumgartner, Applications of the proper forcing axiom, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 913-960. MR 776640 (86g:03084)
  • [6] A. Dow, An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988). MR 1031969 (91a:54003)
  • [7] B. A. Efimov, Dyadic bicompacta, Trudy Moscov. Mat. Obshch. 14 (1965), 211-247. MR 0202105 (34:1979)
  • [8] R. Haydon, On a problem of Pelczynski: Miljutin spaces, Dugundji spaces and $ AE(0{\text{-}}\dim )$, Studia Math. 52 (1976), 23-31. MR 0418025 (54:6069)
  • [9] B. A. Pasynkov, Dokl. Akad. Nauk SSSR 221 (1975), 543-546. MR 0377834 (51:14003)
  • [10] A. Pelczynski, Linear extensions, linear averagings and their applications to linear topological classifications of spaces of continuous functions, Dissertationes Math. 58 (1968). MR 0227751 (37:3335)
  • [11] E. V. Scepin, Topology of limit spaces of uncountable inverse spectra, Uspekhi Mat. Nauk 31 (1976), no. 5, 191-226. MR 0464137 (57:4072)
  • [12] L. B. Shapiro, On absolutes of topological spaces and continuous mappings, Dokl. Akad. Nauk SSSR 226 (1976), no. 3, 523-526. MR 0405377 (53:9171)
  • [13] -, On spaces coabsolute to dyadic bicompacta, Dokl. Akad. Nauk SSSR 293 (1987), no. 5, 1077-1081. MR 890202 (88m:54036)
  • [14] V. V. Uspenskij, Why compact groups are dyadic, General Topology and its Relations to Modern Analysis and Algebra, Proc. Sixth 1986 Prague Topological Symposium, Heldermann Verlag, Berlin, 1988, pp. 601-610. MR 952642 (89i:22005)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22A05, 54D80, 54H11

Retrieve articles in all journals with MSC: 22A05, 54D80, 54H11


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1246512-X
Keywords: Coabsolute spaces, Dugundji space, $ \omega $-bounded group
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society