Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Elliptic genera of level $ N$ and Jacobi polynomials


Author: J. Barr von Oehsen
Journal: Proc. Amer. Math. Soc. 122 (1994), 303-312
MSC: Primary 55N22; Secondary 11F11, 33C45, 57R77
MathSciNet review: 1246539
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this work, we study Hirzebruch's level N elliptic genera and show that the image of the complex projective spaces under the level 3 genus can be realized very compactly in terms of Jacobi polynomials. To obtain these results we examine a differential equation which the level 3 logarithm satisfies.


References [Enhancements On Off] (What's this?)

  • [Br] Jean-Luc Brylinski, Representations of loop groups, Dirac operators on loop space, and modular forms, Topology 29 (1990), no. 4, 461–480. MR 1071369, 10.1016/0040-9383(90)90016-D
  • [Ch] K. Chandrasekharan, Elliptic functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 281, Springer-Verlag, Berlin, 1985. MR 808396
  • [C-C] D. V. Chudnovsky and G. V. Chudnovsky, Elliptic formal groups over 𝑍 and 𝐹_{𝑝} in applications to number theory, computer science and topology, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986), Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 11–54. MR 970280, 10.1007/BFb0078037
  • [H1] F. Hirzebruch, Topological methods in algebraic geometry, Third enlarged edition. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. Die Grundlehren der Mathematischen Wissenschaften, Band 131, Springer-Verlag New York, Inc., New York, 1966. MR 0202713
  • [H2] -, Mannigfaltigkeiten und Modulformen, Lecture Notes, compiled by T. Berger and R. Jung, Univ. of Bonn, 1988.
  • [H3] Friedrich Hirzebruch, Elliptic genera of level 𝑁 for complex manifolds, Differential geometrical methods in theoretical physics (Como, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 250, Kluwer Acad. Publ., Dordrecht, 1988, pp. 37–63. MR 981372
  • [Ko] Neal Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1984. MR 766911
  • [Kr] Igor Moiseevich Krichever, Generalized elliptic genera and Baker-Akhiezer functions, Mat. Zametki 47 (1990), no. 2, 34–45, 158 (Russian); English transl., Math. Notes 47 (1990), no. 1-2, 132–142. MR 1048541, 10.1007/BF01156822
  • [L1] Peter S. Landweber, Elliptic cohomology and modular forms, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986), Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 55–68. MR 970281, 10.1007/BFb0078038
  • [L2] Peter S. Landweber, Supersingular elliptic curves and congruences for Legendre polynomials, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986), Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 69–93. MR 970282, 10.1007/BFb0078039
  • [O] Serge Ochanine, Sur les genres multiplicatifs définis par des intégrales elliptiques, Topology 26 (1987), no. 2, 143–151 (French). MR 895567, 10.1016/0040-9383(87)90055-3
  • [R] Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042
  • [Sh] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Kan\cflex o Memorial Lectures, No. 1. MR 0314766
  • [St] Robert E. Stong, Notes on cobordism theory, Mathematical notes, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0248858
  • [Sz] G. Szegö, Orthogonal polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1975.
  • [V] J. B. von Oehsen, Elliptic genera of level N and Jacobi polynomials, Thesis, Rutgers Univ., 1991.
  • [W] Edward Witten, The index of the Dirac operator in loop space, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986), Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 161–181. MR 970288, 10.1007/BFb0078045
  • [Z] Don Zagier, Note on the Landweber-Stong elliptic genus, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986), Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 216–224. MR 970290, 10.1007/BFb0078047

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55N22, 11F11, 33C45, 57R77

Retrieve articles in all journals with MSC: 55N22, 11F11, 33C45, 57R77


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1994-1246539-8
Article copyright: © Copyright 1994 American Mathematical Society