Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Elliptic genera of level $ N$ and Jacobi polynomials


Author: J. Barr von Oehsen
Journal: Proc. Amer. Math. Soc. 122 (1994), 303-312
MSC: Primary 55N22; Secondary 11F11, 33C45, 57R77
DOI: https://doi.org/10.1090/S0002-9939-1994-1246539-8
MathSciNet review: 1246539
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this work, we study Hirzebruch's level N elliptic genera and show that the image of the complex projective spaces under the level 3 genus can be realized very compactly in terms of Jacobi polynomials. To obtain these results we examine a differential equation which the level 3 logarithm satisfies.


References [Enhancements On Off] (What's this?)

  • [Br] J.-L. Brylinski, Representations of loop groups, Dirac operators on loop space, and modular forms, Topology 29 (1990), 461-480. MR 1071369 (91j:58151)
  • [Ch] K. Chandrasekharan, Elliptic functions, Springer-Verlag, 1985. MR 808396 (87e:11058)
  • [C-C] D. V. Chudnovsky and G. V. Chùdnovsky, Elliptic formal groups over Z and $ {F_p}$ in applications to number theory, computer science and topology, Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Math., vol. 1326, Springer-Verlag, Berlin and New York, 1988, pp. 11-54. MR 970280
  • [H1] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, Berlin and New York, 1966. MR 0202713 (34:2573)
  • [H2] -, Mannigfaltigkeiten und Modulformen, Lecture Notes, compiled by T. Berger and R. Jung, Univ. of Bonn, 1988.
  • [H3] -, Elliptic genera of level N for complex manifolds, Differential Geometric Methods in Theoretical Physics, Kluwer, Dordrecht, 1988, pp. 37-63. MR 981372 (90m:57030)
  • [Ko] N. Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Math., vol. 97, Springer-Verlag, Berlin and New York, 1984. MR 766911 (86c:11040)
  • [Kr] I. M. Krichever, Generalized elliptic genera and Baker-Akhiezer functions, Mat. Zametki 47 (1990), no. 2, 34-45; English transl. in Math. Notes 47 (1990), no. 2, 132-142. MR 1048541 (91e:57059)
  • [L1] P. Landweber, Elliptic cohomology and modular forms, Lecture Notes in Math., vol. 1326, Springer-Verlag, Berlin and New York, 1988, pp. 55-68. MR 970281
  • [L2] -, Supersingular elliptic curves and congruences for Legendre polynomials, Lecture Notes in Math., vol. 1326, Springer-Verlag, Berlin and New York, 1988, pp. 69-93. MR 970282
  • [O] S. Ochanine, Sur les genres multiplicatifs définis par des intégrales elliptiques, Topology 26 (1987), 143-151. MR 895567 (88e:57031)
  • [R] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic Press, New York, 1986. MR 860042 (87j:55003)
  • [Sh] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, Princeton, NJ, 1971. MR 0314766 (47:3318)
  • [St] R. Stong, Notes on cobordism theory, Princeton Univ. Press, Princeton, NJ, 1968. MR 0248858 (40:2108)
  • [Sz] G. Szegö, Orthogonal polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1975.
  • [V] J. B. von Oehsen, Elliptic genera of level N and Jacobi polynomials, Thesis, Rutgers Univ., 1991.
  • [W] E. Witten, The index of the Dirac operator in loop space, Lecture Notes in Math., vol. 1326, Springer-Verlag, Berlin and New York, 1988, pp. 161-181. MR 970288
  • [Z] D. Zagier, Note on the Landweber-Stong elliptic genus, Lecture Notes in Math., vol. 1326, Springer-Verlag, Berlin and New York, 1988, pp. 216-224. MR 970290

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55N22, 11F11, 33C45, 57R77

Retrieve articles in all journals with MSC: 55N22, 11F11, 33C45, 57R77


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1246539-8
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society