Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the essential selfadjointness of Dirichlet operators on group-valued path space


Author: Ernesto Acosta
Journal: Proc. Amer. Math. Soc. 122 (1994), 581-590
MSC: Primary 58G32; Secondary 58D20, 60B15
DOI: https://doi.org/10.1090/S0002-9939-1994-1195711-4
MathSciNet review: 1195711
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be a compact Lie group with Lie algebra $ \mathcal{G}$. Consider the Wiener measure P on the space

$\displaystyle {W_G} = \{ g:[0,1] \to G,g\,{\text{continuous}},g(0) = e\} $

For each h in the Cameron-Martin space H over $ \mathcal{G}$, let $ {\partial _h}$ be the associated right invariant vector field over $ {W_G}$ and let $ \partial _h^ \ast $ be its adjoint with respect to P. We prove for a particular h that the space of functions on $ {W_G}$ generated by $ {C^\infty }$-cylindrical functions on $ {W_G}$ together with one Gaussian random variable is a core for the Dirichlet operator $ \partial _h^ \ast {\partial _h}$. This is the first step in proving the essential selfadjointness of the Number operator over group-valued path spaces in the natural presumed core.

References [Enhancements On Off] (What's this?)

  • [Aco] E. Acosta, On the essential self-adjointness of Dirichlet operators on nonlinear path spaces, Ph.D. Thesis, Cornell University, 1991.
  • [Air] H. Airault, Differential calculus on finite codimensional submanifolds of the Wiener space. The divergence operator, J. Funct. Anal. 100 (1991), 291-316. MR 1125228 (92k:60119)
  • [AirMal] H. Airault and P. Malliavin, Integration geomtrique sur l'espace de Wiener, Bull. Sci. Math. (2) 112 (1988), 3-52. MR 942797 (89f:60072)
  • [AirVan] H. Airault and Van Bisen, Le processus d'Ornstein-Uhlembeck sur une sous-variete de l'espace de Wiener, Bull. Sci. Math. (2) 115 (1991), 185-210. MR 1101023 (92g:60074)
  • [AlHoe] S. Albeverio and R. Hoegh-Krohn, The energy representation of Sobolev Lie groups, Compositio Math. 36 (1978), 37-52. MR 515036 (80i:58017)
  • [AlRöc] S. Albeverio and H. Röckner, Classical Dirichlet forms on topological vector spaces-closability and Cameron-Martin formula, J. Funct. Anal. 88 (1990), 395-436. MR 1038449 (91g:47030)
  • [Get] E. Getzler, Dirichlet forms on loop spaces, Bull. Sci. Math. (2) 113 (1989), 151-174. MR 1002216 (90g:58146)
  • [Gr] L. Gross, Logarithmic Sobolev inequalities on loop groups, J. Funct. Anal. 102 (1991), 268-313. MR 1140628 (93b:22037)
  • [Mal1] M. P. Malliavin and P. Malliavin, Integration on loop groups I, quasi invariant measure, J. Funct. Anal. 93 (1990), 207-237. MR 1070039 (91k:60084)
  • [Mal2] -, Integration on loop groups 2, J. Funct. Anal. 104 (1992), 71-109. MR 1152460 (93d:60098)
  • [McK] H. M. McKean, Jr., Stochastic integrals, Academic Press, New York, 1969. MR 0247684 (40:947)
  • [ReSim] M. Reed and B. Simon, Methods of modern mathematical physics, Academic Press, New York and London, 1972. MR 0493419 (58:12429a)
  • [RöcShe] M. Röckner and Z. Tu-Sheng, On the uniqueness of generalized Schrödinger operators and applications, J. Funct. Anal. 105 (1992), 187-231. MR 1156676 (93d:47092)
  • [RöcWie] M. Röckner and N. Wielens, Dirichlet forms, closability and change of speed measure, Infinite-dimensional analysis and stochastic processes (Bielefield, 1983), Research Notes in Math., vol. 124, 1985, pp. 119-144. MR 865023 (88a:31016)
  • [Tak1] M. Takeda, On the uniqueness of Markovian self-adjoint extensions, Stochastic Processes-Mathematics and Physics 2 (Bielefeld, 1985), Lecture Notes in Math., vol. 1250, Springer-Verlag, New York and Berlin, 1987, pp. 319-325. MR 897814 (89e:81036)
  • [Tak2] -, On the uniqueness of Markovian self-adjoint extensions of diffusion operators on infinite dimensional spaces, Osaka J. Math. 22 (1985), 733-742. MR 815442 (88f:35143)
  • [Tak3] -, The maximum Markovian self-adjoint extension of generalized Schrödinger operators, J. Math. Soc. Japan (1990).
  • [Wie] N. Wielens, The essential self-adjointness of generalized Schrödinger operators, J. Funct. Anal. 61 (1985), 98-115.
  • [IkeWat] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland/Kodansha, Amsterdam, 1981. MR 1011252 (90m:60069)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G32, 58D20, 60B15

Retrieve articles in all journals with MSC: 58G32, 58D20, 60B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1195711-4
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society