On quadratic residues and nonresidues in difference sets modulo
Author:
J. Fabrykowski
Journal:
Proc. Amer. Math. Soc. 122 (1994), 325-331
MSC:
Primary 11A07; Secondary 11B75
DOI:
https://doi.org/10.1090/S0002-9939-1994-1205491-1
MathSciNet review:
1205491
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let , and consider a set
of residues modulo m such that
and
for all i and j with
are quadratic residues (nonresidues) modulo m. We investigate the estimation of the maximal cardinality of such a set
for various moduli m.
- [1] B. Bollobás, Random graphs, Academic Press, New York, 1985. MR 809996 (87f:05152)
- [2] D. A. Buell and K. S. Williams, Maximal residue difference sets modulo p, Proc. Amer. Math. Soc. 69 (1978), 205-209. MR 0498345 (58:16478)
- [3] P. Erdös and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 435-470.
- [4] J. Fabrykowski, On maximal residue difference sets modulo p, Canad. Math. Bull. 36 (1993), 144-146. MR 1222527 (94b:11006)
- [5] R. Guy, Unsolved problems in number theory, Vol. 1, Problem F8, Springer-Verlag, New York, 1981, p. 135. MR 656313 (83k:10002)
- [6] H. L. Montgomery, Topics in multiplicative number theory, Springer-Verlag, New York, 1986. MR 0337847 (49:2616)
- [7]
E. J. F. Primrose, The number of quadratic residues
, Math. Gaz. 61 (1977), 60-61. MR 0460223 (57:218)
- [8] I. Z. Ruzsa, Difference sets without squares, Period. Math. Hungar. 15 (1984), 205-209. MR 756185 (85j:11022)
- [9] -, private communication.
- [10] A. Sarközy, On difference sets of sequences of integers. II, Ann. Univ. Sci. Budapest 21 (1978), 45-53. MR 536201 (80j:10062a)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11A07, 11B75
Retrieve articles in all journals with MSC: 11A07, 11B75
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1994-1205491-1
Article copyright:
© Copyright 1994
American Mathematical Society