All cluster points of countable sets in supercompact spaces are the limits of nontrivial sequences

Author:
Zhong Qiang Yang

Journal:
Proc. Amer. Math. Soc. **122** (1994), 591-595

MSC:
Primary 54D30

MathSciNet review:
1209102

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A space is called supercompact if it has an open subbase such that every cover consisting of elements of the subbase has a subcover consisting of two elements. In this paper we prove that, in a continuous image of a closed -set of a supercompact space, a point is a cluster point of a countable set if and only if it is the limit of a nontrivial sequence. As corollaries, we answer questions asked by J. van Mill et al.

**[1]**Murray G. Bell,*Supercompactness of compactifications and hyperspaces*, Trans. Amer. Math. Soc.**281**(1984), no. 2, 717–724. MR**722770**, 10.1090/S0002-9947-1984-0722770-0**[2]**Murray G. Bell,*Not all dyadic spaces are supercompact*, Comment. Math. Univ. Carolin.**31**(1990), no. 4, 775–779. MR**1091375****[3]**Murray G. Bell,*A first countable supercompact Hausdorff space with a closed 𝐺_{𝛿} nonsupercompact subspace*, Colloq. Math.**43**(1980), no. 2, 233–241 (1981). MR**628178****[4]**W. Bula, J. Nikiel, H. M. Tuncali, and E. D. Tymchatyn,*Continuous images of ordered compacta are regular supercompact*, Proceedings of the Tsukuba Topology Symposium (Tsukuba, 1990), 1992, pp. 203–221. MR**1180810**, 10.1016/0166-8641(92)90005-K**[5]**Eric K. van Douwen,*Special bases for compact metrizable spaces*, Fund. Math.**111**(1981), no. 3, 201–209. MR**611760****[6]**Eric van Douwen and Jan van Mill,*Supercompact spaces*, Topology Appl.**13**(1982), no. 1, 21–32. MR**637424**, 10.1016/0166-8641(82)90004-9**[7]**J. de Groot,*Supercompactness and superextension*, Contribution to Ext. Theory Top. Struct. Symposium (Berlin), Dentyscher Verlaae der Wissenchafen, Berlin, 1969, pp. 89-90.**[8]**J. van Mill,*Supercompactness and Wallman spaces*, Mathematisch Centrum, Amsterdam, 1977. Mathematical Centre Tracts, No. 85. MR**0464160****[9]**Jan van Mill and Charles F. Mills,*Closed 𝐺_{𝛿} subsets of supercompact Hausdorff spaces*, Nederl. Akad. Wetensch. Indag. Math.**41**(1979), no. 2, 155–162. MR**535563****[10]**Charles F. Mills and Jan van Mill,*A nonsupercompact continuous image of a supercompact space*, Houston J. Math.**5**(1979), no. 2, 241–247. MR**546758****[11]**Charles F. Mills,*A simpler proof that compact metric spaces are supercompact*, Proc. Amer. Math. Soc.**73**(1979), no. 3, 388–390. MR**518526**, 10.1090/S0002-9939-1979-0518526-8

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54D30

Retrieve articles in all journals with MSC: 54D30

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1994-1209102-0

Keywords:
Supercompact,
limit,
sequence

Article copyright:
© Copyright 1994
American Mathematical Society