Hyperplane sections of linearly normal curves

Author:
E. Ballico

Journal:
Proc. Amer. Math. Soc. **122** (1994), 395-398

MSC:
Primary 14H99; Secondary 14N05

DOI:
https://doi.org/10.1090/S0002-9939-1994-1213855-5

MathSciNet review:
1213855

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A particular case of the results proved here is that a general set of *d* points in is not the hyperplane section of a linearly normal, locally complete intersection curve in if , and the characteristic of *k* is zero.

**[AC]**E. Arbarello and M. Cornalba,*Su una congettura di Petri*, Comment. Math. Helv.**56**(1981), 1-38. MR**615613 (82k:14029)****[B]**E. Ballico,*Points not as hyperplane sections of projectively normal curves*, Proc. Amer. Math. Soc.**112**(1991), 343-346. MR**1052870 (91i:14023)****[BM]**E. Ballico and J. Migliore,*Smooth curves whose hyperplane section is a given set of points*, Comm. Algebra**18**(1990), 3015-3040. MR**1063348 (91h:14034)****[CO]**L. Chiantini and F. Orecchia,*Plane sections of arithmetically normal curves in*, Algebraic Curves and Projective Geometry (Trento 1988), Lecture Notes Math., vol. 1389, Springer-Verlag, New York, 1989, pp. 32-42. MR**1023388 (90j:14038)****[EH]**D. Eisenbud and J. Harris,*The dimension of the Chow variety of curves*, Compositio Math.**83**(1992), 291-310. MR**1175942 (93h:14002)****[Ho]**E. Horikawa,*On deformations of holomorphic maps*. I, J. Math. Soc. Japan**25**(1973), 372-396. MR**0322209 (48:571)****[W1]**C. Walter,*Hyperplane sections of arithmetically Cohen-Macaulay curves*, preprint. MR**1260185 (95k:14047)****[W2]**-,*Hyperplane sections of curves of small genus*, preprint.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
14H99,
14N05

Retrieve articles in all journals with MSC: 14H99, 14N05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1213855-5

Keywords:
Projective curve,
Hilbert scheme,
locally complete intersection,
deformation functor,
normal sheaf

Article copyright:
© Copyright 1994
American Mathematical Society