Finite groups containing many involutions

Author:
Avinoam Mann

Journal:
Proc. Amer. Math. Soc. **122** (1994), 383-385

MSC:
Primary 20D60; Secondary 20C15

DOI:
https://doi.org/10.1090/S0002-9939-1994-1242094-7

MathSciNet review:
1242094

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If the ratio of the number of involutions of a finite group to the group order is bounded below, the group is bounded by abelian by bounded.

**[Be]**Yakov Berkovich,*Counterexamples to a conjecture about the sum of degrees of irreducible characters*, Publ. Math. Debrecen**39**(1991), no. 1-2, 1–4. MR**1132861****[BHN]**B. H. Neumann,*Groups covered by permutable subsets*, J. London Math. Soc.**29**(1954), 236–248. MR**0062122**, https://doi.org/10.1112/jlms/s1-29.2.236**[Bl]**Russell D. Blyth,*Rewriting products of group elements. I*, J. Algebra**116**(1988), no. 2, 506–521. MR**953167**, https://doi.org/10.1016/0021-8693(88)90233-5**[BM]**Y. Berkovich and A. Mann,*On sums of degrees of the irreducible characters of a finite group and its subgroups*(in preparation).**[CLMR]**Mario Curzio, Patrizia Longobardi, Mercede Maj, and Derek J. S. Robinson,*A permutational property of groups*, Arch. Math. (Basel)**44**(1985), no. 5, 385–389. MR**792360**, https://doi.org/10.1007/BF01229319**[I]**I. Martin Isaacs,*Character theory of finite groups*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Pure and Applied Mathematics, No. 69. MR**0460423****[LM]**Hans Liebeck and Desmond MacHale,*Groups with automorphisms inverting most elements*, Math. Z.**124**(1972), 51–63. MR**0291273**, https://doi.org/10.1007/BF01142582**[NB]**K. R. Nekrasov and Ya. G. Berkovich,*Finite groups with large sums of degrees of irreducible characters*, Publ. Math. Debrecen**33**(1986), no. 3-4, 333–354 (Russian). MR**883763****[P]**Donald S. Passman,*The algebraic structure of group rings*, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR**470211****[PMN]**Peter M. Neumann,*Two combinatorial problems in group theory*, Bull. London Math. Soc.**21**(1989), no. 5, 456–458. MR**1005821**, https://doi.org/10.1112/blms/21.5.456**[R]**David J. Rusin,*What is the probability that two elements of a finite group commute?*, Pacific J. Math.**82**(1979), no. 1, 237–247. MR**549847**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20D60,
20C15

Retrieve articles in all journals with MSC: 20D60, 20C15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1242094-7

Keywords:
Involutions

Article copyright:
© Copyright 1994
American Mathematical Society