Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Every $ 3$-manifold with boundary embeds in $ {\rm Triod}\times {\rm Triod}\times I$


Author: Zhong Mou Li
Journal: Proc. Amer. Math. Soc. 122 (1994), 575-579
MSC: Primary 57N10; Secondary 57M20, 57Q35
DOI: https://doi.org/10.1090/S0002-9939-1994-1254861-4
MathSciNet review: 1254861
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let M be a compact, connected 3-manifold with nonempty boundary. Then M embeds in $ T \times T \times I$, where T is a triod and $ I = [0,1]$.


References [Enhancements On Off] (What's this?)

  • [1] D. Gillman, The Poincaré conjecture is true in the product of any graph with a disk, Proc. Amer. Math. Soc. 110 (1990), 829-834. MR 1021898 (91b:57015)
  • [2] D. Gillman and D. Rolfsen, Three-manifolds embed in small 3-complexes, Internat. J. Math. 3 (1992), 179-183. MR 1146810 (93b:57017)
  • [3] J. Hempel, 3-manifolds, Princeton Univ. Press, Princeton, NJ, 1976. MR 0415619 (54:3702)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57N10, 57M20, 57Q35

Retrieve articles in all journals with MSC: 57N10, 57M20, 57Q35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1254861-4
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society