FIXED POINT ITERATION PROCESSES FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

KOK-KEONG TAN AND HONG-KUN XU

(Communicated by Palle E. T. Jorgensen)

Abstract. Let X be a uniformly convex Banach space which satisfies Opial's condition or has a Fréchet differentiable norm, C a bounded closed convex subset of X, and $T: C \to C$ an asymptotically nonexpansive mapping. It is then shown that the modified Mann and Ishikawa iteration processes defined by $x_{n+1} = t_n T^n x_n + (1-t_n)x_n$ and $x_{n+1} = t_n T^n (s_n T^m x_n + (1-s_n)x_n) + (1-t_n)x_n$, respectively, converge weakly to a fixed point of T.

1. Introduction

Let C be a nonempty subset of a Banach space X. A mapping $T: C \to C$ is said to be asymptotically nonexpansive if there exists a sequence $\{k_n\}$ of positive numbers with $\lim_{n \to \infty} k_n = 1$ such that

$$\|T^n x - T^n y\| \leq k_n \|x - y\|$$

for all $x, y \in C$ and $n = 1, 2, \ldots$. This class of mappings, as a natural extension to that of nonexpansive mappings, was introduced by Goebel and Kirk [4] in 1972. They proved that if C is a bounded closed convex subset of a uniformly convex Banach space X, then every asymptotically nonexpansive self-mapping T of C has a fixed point. This existence result was recently generalized in [14] to a nearly uniformly convex (NUC) Banach space setting (see [5] for definition).

The study of iterative construction for fixed points of asymptotically nonexpansive mappings began in 1978. Bose [1] first proved that if C is a bounded closed convex subset of a uniformly convex Banach space X which satisfies Opial's condition [7] and if $T: C \to C$ is an asymptotically nonexpansive mapping, then $\{T^n x\}$ converges weakly to a fixed point of T provided T is asymptotically regular at x, i.e., $\lim_{n \to \infty} \|T^n x - T^{n+1} x\| = 0$. This conclusion is still valid [8, 14] if Opial's condition of X is replaced by the condition that X has a Fréchet differentiable norm. Furthermore, in both cases, asymptotic regularity of T at x can be weakened to weak asymptotic regularity of T at x, i.e., $\wlim_{n \to \infty} (T^n x - T^{n+1} x) = 0$ (see [12, 13]).

Received by the editors January 21, 1992 and, in revised form, February 9, 1993.

1991 Mathematics Subject Classification. Primary 47H09, 47H10; Secondary 46B20.

Key words and phrases. Fixed point, asymptotically nonexpansive mapping, fixed point iteration process, uniformly convex Banach space, Fréchet differentiable norm, Opial's condition.

©1994 American Mathematical Society

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Recently, Schu [10] considered the following modified Mann iteration process:

\[(M) \quad x_{n+1} = t_n T^n x_n + (1 - t_n) x_n, \quad n \geq 1, \]

where \(\{t_n\} \) is a sequence of real numbers in \((0, 1)\) which is bounded away from both 0 and 1, i.e., \(a \leq t_n \leq b \) for all \(n \) and some \(0 < a < b < 1 \). He verified that if \(C \) is a bounded closed convex subset of a Banach space \(X \) satisfying Opial's condition and if \(T : C \to C \) is an asymptotically nonexpansive mapping such that \(\sum_{n=1}^{\infty} (k_n - 1) \) converges, then the modified Mann iteration process \((M) \) converges weakly to a fixed point of \(T \). Unfortunately, Schu's theorem does not apply to the \(L^p \) spaces if \(p \neq 2 \) since none of these spaces satisfy Opial's condition (cf. [7]).

In this paper we first show that Schu's theorem remains true if the assumption that \(X \) satisfies Opial's condition is replaced by the one that \(Y \) has a Fréchet differentiable norm. This result (Theorem 3.1) applies to the \(L^p \) spaces for \(1 < p < \infty \) since each of these spaces is uniformly convex and uniformly smooth. We then prove the weak convergence of the modified Ishikawa iteration process (cf. Ishikawa [6]):

\[(I) \quad x_{n+1} = t_n T^n (s_n T^n x_n + (1 - s_n) x_n) + (1 - t_n) x_n, \quad n \geq 1, \]

in a uniformly convex Banach space which either satisfies Opial's condition or has a Fréchet differentiable norm.

2. Preliminaries and lemmas

Let \(X \) be a Banach space. Recall that \(X \) is said to satisfy Opial's condition [7] if for each sequence \(\{x_n\} \) in \(X \) the condition \(x_n \rightharpoonup x \) weakly implies \(\lim_{n \to \infty} \|x_n - x\| < \lim_{n \to \infty} \|x_n - y\| \) for all \(y \in X \) different from \(x \). It is known [7] that each \(l^p \) \((1 \leq p < \infty)\) enjoys this property, while \(L^p \) does not unless \(p = 2 \). It is also known [3] that any separable Banach space can be equivalently renormed so that it satisfies Opial's condition. Recall also that \(X \) is said to have a Fréchet differentiable norm if, for each \(x \) in \(S(X) \) , the unit sphere of \(X \) , the limit

\[\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t} \]

exists and is attained uniformly in \(y \in S(X) \) . In this case, we have

\[(2.1) \quad \frac{1}{2} \|x\|^2 + \langle h, J(x) \rangle \leq \frac{1}{2} \|x + h\|^2 \leq \frac{1}{2} \|x\|^2 + \langle h, J(x) \rangle + b(\|h\|) \]

for all \(x, h \in X \) , where \(J \) is the normalized duality map from \(X \) to \(X^* \) defined by

\[J(x) = \{x^* \in X^*: \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}, \]

\(\langle \cdot, \cdot \rangle \) is the duality pairing between \(X \) and \(X^* \) , and \(b \) is a function defined on \([0, \infty)\) such that \(\lim_{t \to 0} b(t)/t = 0 \).

Suppose now that \(C \) is a bounded closed convex subset of a Banach space \(X \) and \(\{T_n\} \) is a sequence of Lipschitzian self-mappings of \(C \) such that the set \(F \) of common fixed points of \(\{T_n\} \) is nonempty. Denote by \(L_n \) the Lipschitz constant of \(T_n \) . In the sequel, we always assume \(L_n \geq 1 \) for all \(n \geq 1 \) and use the notations \(\lim = \limsup, \lim = \liminf, \rightharpoonup \) for weak convergence, \(\rightharpoonup \) for strong convergence, and \(F(T) \) for the set of fixed points of \(T \).
For a given $x_1 \in C$, we recurrently define the sequence \{x_n\} by

$$x_{n+1} = T_n x_n, \quad n \geq 1.$$

Lemma 2.1. Suppose that $\sum_n (L_n - 1)$ converges. Then for each $f \in F$, $\lim_n \|x_n - f\|$ exists.

Proof. For all n, $m \geq 1$, we have

$$\|x_{n+m+1} - f\| = \|T_{n+m} x_{n+m} - f\| \leq L_{n+m} \|x_{n+m} - f\| \leq \left(\prod_{j=n}^{n+m} L_j \right) \|x_n - f\|.$$

Since $\sum_n (L_n - 1)$ converges, it follows that

$$\lim_{m \to \infty} \|x_{n+m+1} - f\| \leq \left(\prod_{j=n}^{\infty} L_j \right) \|x_n - f\|.$$

Consequently,

$$\lim_n \|x_n - f\| \leq \lim_{n} \|x_n - f\|.$$

This proves the lemma. \(\square \)

Lemma 2.2. Suppose that X is uniformly convex and $\sum_n (L_n - 1)$ converges. Then $\lim_{n \to \infty} \|t x_n + (1-t) f_1 - f_2\|$ exists for every $f_1, f_2 \in F$ and $0 \leq t \leq 1$.

Proof. We follow an idea of Reich [9]. Set

$$a_n = a_n(t) = \|t x_n + (1-t) f_1 - f_2\|, \quad S_{n,m} = T_{n+m-1} T_{n+m-2} \cdots T_n,$$

and

$$b_{n,m} = \|S_{n,m}(t x_n + (1-t) f_1) - (t x_{n+m} + (1-t) f_1)\|.$$

Then, observing $S_{n,m} x_n = x_{n+m}$, we get

$$a_{n+m} = \|t x_{n+m} + (1-t) f_1 - f_2\| \leq b_{n,m} + \|S_{n,m}(t x_n + (1-t) f_1) - f_2\| \leq b_{n,m} + \left(\prod_{j=n}^{n+m-1} L_j \right) a_n \leq b_{n,m} + H_n a_n,$$

where $H_n = \prod_{j=n}^{\infty} L_j$. By a result of Bruck [2], we have

$$b_{n,m} \leq H_n g^{-1}(\|x_n - f_1\| - H_n^{-1}\|S_{n,m} x_n - f_1\|) \leq H_n g^{-1}(\|x_n - f_1\| - \|x_{n+m} - f_1\| + (1 - H_n^{-1})d),$$

where $g: [0, \infty) \to [0, \infty)$, $g(0) = 0$, is a strictly increasing continuous function depending only on d, the diameter of C. Since $\lim_{n \to \infty} H_n = 1$, it follows from Lemma 2.1 that $\lim_{n,m \to \infty} b_{n,m} = 0$. Therefore,

$$\lim_{m \to \infty} a_m \leq \lim_{n,m \to \infty} b_{n,m} + \lim_{n \to \infty} H_n a_n = \lim_{n \to \infty} a_n.$$

This completes the proof. \(\square \)
Lemma 2.3. Suppose that X is a uniformly convex Banach space with a Fréchet differentiable norm and that $\sum_n (L_n - 1)$ converges. Then for every $f_1, f_2 \in F$, $\lim_{n \to \infty} \langle x_n, J(f_1 - f_2) \rangle$ exists; in particular,

$$\langle p - q, J(f_1 - f_2) \rangle = 0$$

for all $p, q \in \omega_w(x_n)$. Here, $\omega_w(x_n)$ denotes the weak ω-limit set of $\{x_n\}$, i.e., $\omega_w(x_n) = \{y \in X : y = w^*\lim_{k \to \infty} x_{n_k} \text{ for some } n_k \uparrow \infty\}$.

Proof. Taking $x = f_1 - f_2$ and $h = t(x_n - f_1)$ in (2.1), we get

$$\frac{1}{2} \|f_1 - f_2\|^2 + t \langle x_n - f_1, J(f_1 - f_2) \rangle \leq \frac{1}{2} \|tx_n + (1-t)f_1 - f_2\|^2$$

$$\leq \frac{1}{2} \|f_1 - f_2\|^2 + t \langle x_n - f_1, J(f_1 - f_2) \rangle + b(t\|x_n - f_1\|).$$

It follows from Lemma 2.2 that

$$\lim_{n \to \infty} \langle x_n - f_1, J(f_1 - f_2) \rangle = \lim_{n \to \infty} \langle x_n - f_1, J(f_1 - f_2) \rangle + o(t).$$

This yields

$$\lim_{n \to \infty} \langle x_n - f_1, J(f_1 - f_2) \rangle = \lim_{n \to \infty} \langle x_n - f_1, J(f_1 - f_2) \rangle + o(1).$$

Letting $t \to 0^+$, we see that $\lim_{n \to \infty} \langle x_n - f_1, J(f_1 - f_2) \rangle$ exists. □

We also need the following known lemmas.

Lemma 2.4 (cf. Schu [10]). Let X be a uniformly convex Banach space, $\{t_n\}$ a sequence of real numbers in $(0, 1)$ bounded away from 0 and 1, and $\{x_n\}$ and $\{y_n\}$ sequences of X such that $\lim_{n \to \infty} \|x_n\| \leq a$, $\lim_{n \to \infty} \|y_n\| \leq a$, and $\lim_{n \to \infty} \|t_n x_n + (1-t_n) y_n\| = a$ for some $a \geq 0$. Then $\lim_{n \to \infty} \|x_n - y_n\| = 0$.

Lemma 2.5 [11]. Let X be a normed space, C a convex subset of X, and $T : C \to C$ a uniformly L-Lipschitzian mapping, i.e., $\|T^n x - T^n y\| \leq L \|x - y\|$ for all x, y in C and $n = 1, 2, \ldots$. For any given x_1 in C and sequences $\{t_n\}$ and $\{s_n\}$ in $[0, 1]$, define $\{x_n\}$ by

$$x_{n+1} = t_n T^n (s_n T^n x_n + (1 - s_n) x_n) + (1 - t_n) x_n , \quad n \geq 1.$$

Then we have

$$\|x_n - Tx_n\| \leq c_n + c_{n-1} L(1 + 3L + 2L)^2$$

for all $n \geq 2$, where $c_n = \|x_n - T^n x_n\|$.

Lemma 2.6 [14]. Suppose that C is a bounded closed convex subset of a uniformly convex Banach space and $T : C \to C$ is an asymptotically nonexpansive mapping. Then $I - T$ is demiclosed at the origin, i.e., for any sequence $\{x_n\}$ in C, the conditions $x_n \to x_0$ and $x_n - Tx_n \to 0$ imply $x_0 - Tx_0 = 0$.

3. Weak convergence

In this section we prove the weak convergence of the modified Mann and the modified Ishikawa iteration processes in a uniformly convex Banach space which satisfies Opial’s condition or has a Fréchet differentiable norm.
Theorem 3.1. Let X be a uniformly convex Banach space with a Fréchet differentiable norm, C a bounded closed convex subset of X, and $T: C \to C$ an asymptotically nonexpansive mapping such that $\sum_{n}(k_n - 1)$ converges. Then for each $x_1 \in C$, the sequence $\{x_n\}$ defined by the modified Mann iteration process (M) with $\{t_n\}$ a sequence of real numbers bounded away from 0 and 1 converges weakly to a fixed point of T.

Proof. Set $T_n = t_nT^n + (1 - t_n)I$. (Here I is the identity operator of X.) Then it is easily seen that $x_{n+1} = T_n x_n$, $F(T_n) \supseteq F(T)$, and T_n is Lipschitzian with constant $L_n = t_n k_n + (1 - t_n) \geq 1$. Since $L_n - 1 = t_n (k_n - 1) \leq k_n - 1$ and $\sum_n(k_n - 1)$ converges, $\sum_n(L_n - 1)$ also converges. It thus follows from Lemma 2.3 that

$$\lim_{n \to \infty} \|x_n - f\| = 0$$

for all $x, y \in \omega(x_n)$ and $f_1, f_2 \in F(T)$. Moreover, for $f \in F(T)$, we have

$$\lim_{n \to \infty} \|T^n x_n - f\| = \lim_{n \to \infty} k_n \|x_n - f\| = \lim_{n \to \infty} \|x_n - f\|$$

and

$$\lim_{n \to \infty} \|T^n x_n - f\| = \lim_{n \to \infty} \|x_{n+1} - f\|.$$

It follows from Lemma 2.4 that $\lim_{n \to \infty} \|T^n x_n - x_n\| = 0$, which implies by Lemma 2.5 that $\lim_{n \to \infty} \|x_n - T x_n\| = 0$, which in turn implies by Lemma 2.6 that $\omega_w(x_n)$ is contained in $F(T)$. So to show that $\{x_n\}$ converges weakly to a fixed point of T, it suffices to show that $\omega_w(x_n)$ consists of just one point. To this end, let $x, y \in \omega_w(x_n)$. Then since $x, y \in F(T)$, it follows from (3.1) that

$$\|x - y\| = 0.$$

Therefore, $x = y$ and the proof is complete. \(\square\)

Remark. We do not know whether Theorem 3.1 remains valid if k_n is allowed to approach 1 slowly enough so that $\sum_n(k_n - 1)$ diverges.

Next, we consider the modified Ishikawa iteration process (I) described in §1.

Theorem 3.2. Let X be a uniformly convex Banach space which satisfies Opial's condition or has a Fréchet differentiable norm, C a bounded closed convex subset of X, and $T: C \to C$ an asymptotically nonexpansive mapping such that $\sum_n(k_n - 1)$ converges. Suppose that x_1 is a given point in C and $\{t_n\}$ and $\{s_n\}$ are real sequences such that $\{t_n\}$ is bounded away from 0 and 1 and $\{s_n\}$ is bounded away from 1. Then the sequence $\{x_n\}$ defined by the modified Ishikawa iteration process (I) converges weakly to a fixed point of T.

Proof. Define a mapping $T_n: C \to C$ by

$$T_n x = t_n T^n(s_n T^n x + (1 - s_n)x) + (1 - t_n)x, \quad x \in C.$$

Then it is easily seen that $x_{n+1} = T_n x_n$, $F(T_n) \supseteq F(T)$, and T_n is Lipschitzian with constant $L_n = 1 + t_n k_n + (1 + s_n k_n - s_n) - t_n \geq 1$ for $k_n \geq 1$. Since $L_n - 1 = t_n (1 + s_n k_n)(k_n - 1) \leq (1 + L)(k_n - 1)$, where $L = \sup_{n \geq 1} k_n$, we see that $\sum_n(L_n - 1)$ converges. Now repeating the arguments in the proof of Theorem 3.1, we arrive at the following conclusions:

(i) $\lim \|x_n - f\|$ exists for every $f \in F(T)$.

(ii) $\langle p - q, J(f_1 - f_2) \rangle = 0$ for every $p, q \in \omega_w(x_n)$ and $f_1, f_2 \in F(T)$.

(iii) $\lim_{n \to \infty} \|x_n - T^n y_n\| = 0$ with $y_n = s_n T^n x_n + (1 - s_n)x_n$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Since
\[\|T^n x_n - x_n\| \leq \|T^n x_n - T^n y_n\| + \|T^n y_n - x_n\| \]
\[\leq k_n \|x_n - y_n\| + \|T^n y_n - x_n\| \]
\[= k_n s_n \|T^n x_n - x_n\| + \|T^n y_n - x_n\| , \]
we have
\[\|T^n x_n - x_n\| \leq \frac{1}{1 - k_n s_n} \|T^n y_n - x_n\| , \]
from which, together with the facts that \(\{s_n\} \) is bounded away from 1 and \(\{k_n\} \) converges to 1, we conclude that \(\lim_{n \to \infty} \|T^n x_n - x_n\| = 0 \). By Lemma 2.5, we have the following result:

(iv) \(\lim_{n \to \infty} \|x^n - T x_n\| = 0 \).

It follows from (iv) and Lemma 2.6 that \(\omega_w(x_n) \subset F(T) \). So to show the theorem, it suffices to show that \(\omega_w(x_n) \) is a singleton. To this end, we suppose first that \(X \) satisfies Opial's condition. Let \(p, q \) be in \(\omega_w(x_n) \) and \(\{x_{n_i}\} \) and \(\{x_{m_j}\} \) be subsequences of \(\{x_n\} \) chosen so that \(x_{n_i} \rightharpoonup p \) and \(x_{m_j} \rightharpoonup q \). If \(p \neq q \), then Opial's condition of \(X \) implies that
\[\lim_{n \to \infty} \|x_n - p\| = \lim_{i \to \infty} \|x_{n_i} - p\| < \lim_{i \to \infty} \|x_{n_i} - q\| = \lim_{j \to \infty} \|x_{m_j} - q\| \]
\[< \lim_{j \to \infty} \|x_{m_j} - p\| = \lim_{n \to \infty} \|x_n - p\| . \]
This contradiction proves the theorem in case \(X \) satisfies Opial's condition. Next, we assume that \(X \) has a Fréchet differentiable norm. Then since \(\omega_w(x_n) \subset F(T) \), as in the proof of Theorem 3.1, we derive from (ii) that for every \(p, q \) in \(\omega_w(x_n) \)
\[\|p - q\|^2 = \langle p - q, J(p - q) \rangle = 0 . \]
This completes the proof. \(\square \)

Acknowledgment

The authors thank the referee for his careful reading and helpful comments on the manuscript.

References

Department of Mathematics, Statistics and Computing Science, Dalhousie University, Nova Scotia, Canada B3H 3J5
E-mail address: kktan@cs.dal.ca

Institute of Applied Mathematics, East China University of Science and Technology, Shanghai 200237, China
Current address: Department of Mathematics, University of Durban-Westville, Private Bag X54001, Durban 4000, South Africa
E-mail address: hkxu@pixie.udw.ac.za