Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the Virasoro algebra as reduced Poisson submanifold of a Kac-Moody algebra on the circle

Author: Gloria Marí Beffa
Journal: Proc. Amer. Math. Soc. 122 (1994), 859-869
MSC: Primary 17B68; Secondary 22E65, 22E67, 58F07
MathSciNet review: 1204369
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show how the Lie-Poisson structure on the dual of the Virasoro algebra can be obtained through a standard Poisson reduction process performed on a Kac-Moody algebra on the circle. We use the geometrical idea of the process to establish some relation between transverse structures on both Poisson manifolds.

References [Enhancements On Off] (What's this?)

  • [1] M. Adler, On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-de Vries type equations, Invent. Math. 50 (1978/79), no. 3, 219–248. MR 520927, 10.1007/BF01410079
  • [2] M. Antonowicz and A. P. Fordy, Hamiltonian structure of nonlinear evolution equations, Soliton theory: a survey of results, Nonlinear Sci. Theory Appl., Manchester Univ. Press, Manchester, 1990, pp. 273–312. MR 1090594
  • [3] Paolo Casati and Marco Pedroni, Drinfel′d-Sokolov reduction on a simple Lie algebra from the bi-Hamiltonian point of view, Lett. Math. Phys. 25 (1992), no. 2, 89–101. MR 1182028, 10.1007/BF00398305
  • [4] V. G. Drinfel'd and V. V. Sokolov, Lie algebras and equations of KdV type, J. Soviet Math. 30 (1985), 1975-2036.
  • [5] I. M. Gel'fand and L. A. Dikii, A family of Hamiltonian structures connected with integrable nonlinear differential equations, I. M. Gelfand, Collected Papers, vol. 1, Springer-Verlag, New York, 1987.
  • [6] B. A. Khesin, Invariants of Hamiltonian KdV-structures, Uspekhi Mat. Nauk 45 (1990), no. 1(271), 195–196 (Russian); English transl., Russian Math. Surveys 45 (1990), no. 1, 209–210. MR 1050945, 10.1070/RM1990v045n01ABEH002315
  • [7] T. G. Khovanova, Gel′fand-Dikiĭ Lie algebras and the Virasoro algebra, Funktsional. Anal. i Prilozhen. 20 (1986), no. 4, 89–90 (Russian). MR 878057
  • [8] A. A. Kirillov, Infinite dimensional groups: their representations, orbits, invariants, Proc. Internat. Congress of Math., Helsinki, 1978.
  • [9] Peter D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490. MR 0235310
  • [10] Jerrold E. Marsden and Tudor Ratiu, Reduction of Poisson manifolds, Lett. Math. Phys. 11 (1986), no. 2, 161–169. MR 836071, 10.1007/BF00398428
  • [11] Gloria Marí Beffa, A transverse structure for the Lie-Poisson bracket on the dual of the Virasoro algebra, Pacific J. Math. 163 (1994), no. 1, 43–72. MR 1256176
  • [12] V. Yu. Ovsienko and B. A. Khesin, Symplectic leaves of the Gel′fand-Dikiĭ brackets and homotopy classes of nonflattening curves, Funktsional. Anal. i Prilozhen. 24 (1990), no. 1, 38–47 (Russian); English transl., Funct. Anal. Appl. 24 (1990), no. 1, 33–40. MR 1052266, 10.1007/BF01077916
  • [13] Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR 900587
  • [14] A. G. Reĭman and M. A. Semenov-Tjan-Šanskiĭ, A family of Hamiltonian structures, hierarchy of Hamiltonians and reduction for first-order matrix differential operators, Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 77–78 (Russian). MR 575222
  • [15] Alan Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), no. 3, 523–557. MR 723816
  • [16] Edward Witten, Coadjoint orbits of the Virasoro group, Comm. Math. Phys. 114 (1988), no. 1, 1–53. MR 925520

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 17B68, 22E65, 22E67, 58F07

Retrieve articles in all journals with MSC: 17B68, 22E65, 22E67, 58F07

Additional Information

Article copyright: © Copyright 1994 American Mathematical Society